Numerical Methods for Hamiltonian Systems: Chaos Detection

Haris Skokos

Department of Mathematics and Applied Mathematics University of Cape Town, Cape Town, South Africa

E-mail: haris.skokos@uct.ac.za URL: http://www.mth.uct.ac.za/~hskokos/

This research has been co-financed by the European Union (European Social Fund – ESF) and Greek national funds through the Operational Program "Education and Lifelong Learning" of the National Strategic Reference Framework (NSRF) - Research Funding Program: Thales. Investing in knowledge society through the European Social Fund.

Outline

- Hamiltonian systems Symplectic maps
 - ✓ Variational equations
 - ✓ Poincaré Surface of Section
 - ✓ Lyapunov exponents
- Smaller ALignment Index SALI
 - ✓ Definition
 - ✓ Behavior for chaotic and regular motion
 - ✓ Applications
- Generalized ALignment Index GALI
 - ✓ Definition Relation to SALI
 - ✓ Behavior for chaotic and regular motion
 - ✓ Applications
 - ✓ Global dynamics
 - ✓ Motion on low-dimensional tori
- Efficient integration of variational equations
 - ✓ Symplectic integrators
 - ✓ The tangent map (TM) method
- Conclusions

Autonomous Hamiltonian systems

Consider an N degree of freedom autonomous Hamiltonian system having a Hamiltonian function of the form: positions momenta

The time evolution of an orbit (trajectory) with initial condition

 $P(0) = (q_1(0), q_2(0), \dots, q_N(0), p_1(0), p_2(0), \dots, p_N(0))$

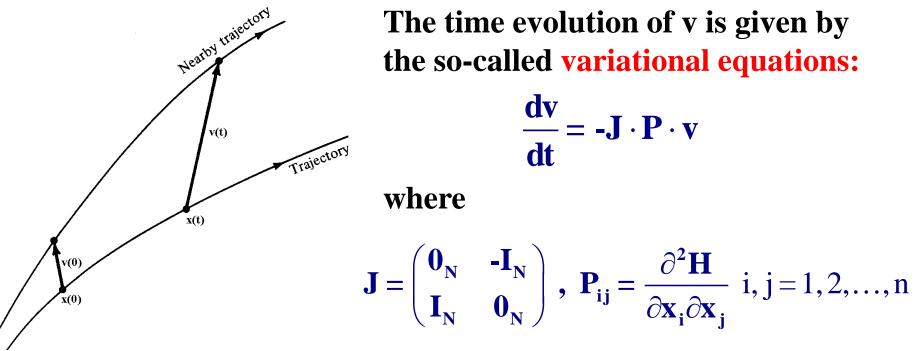
is governed by the Hamilton's equations of motion

$$\frac{\mathbf{d}\mathbf{p}_{i}}{\mathbf{d}\mathbf{t}} = -\frac{\partial \mathbf{H}}{\partial \mathbf{q}_{i}} \quad , \quad \frac{\mathbf{d}\mathbf{q}_{i}}{\mathbf{d}\mathbf{t}} = \frac{\partial \mathbf{H}}{\partial \mathbf{p}_{i}}$$

Variational Equations

We use the notation $\mathbf{x} = (q_1, q_2, ..., q_N, p_1, p_2, ..., p_N)^T$. The deviation vector from a given orbit is denoted by

$$\mathbf{v} = (\delta \mathbf{x}_1, \delta \mathbf{x}_2, \dots, \delta \mathbf{x}_n)^T$$
, with n=2N

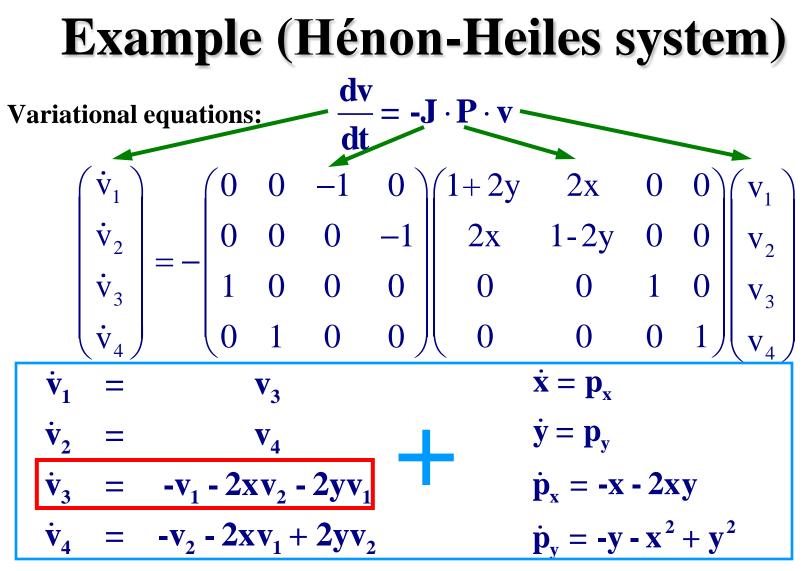


Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93

Example (Hénon-Heiles system) $H = \frac{1}{2} \left(p_x^2 + p_y^2 \right) + \frac{1}{2} \left(x^2 + y^2 \right) + x^2 y - \frac{1}{3} y^3$ ons of motion: $\frac{dp_{i}}{dt} = -\frac{\partial H}{\partial q_{i}}, \quad \frac{dq_{i}}{dt} = \frac{\partial H}{\partial p_{i}} \implies \begin{cases} \dot{x} = p_{x} \\ \dot{y} = p_{y} \\ \dot{p}_{x} = -x - 2xy \\ \dot{p}_{y} = -y - x^{2} + y^{2} \end{cases}$ Hamilton's equations of motion:

 $\dot{p}_y = -y - x^2 + y^2$ In order to get the variational equations we linearize the above equations by substituting x, y, px, py with x+v₁, y+v₂, p_x+v₃, p_y+v₄ where v=(v₁,v₂,v₃,v₄) is the deviation vector. So we get:

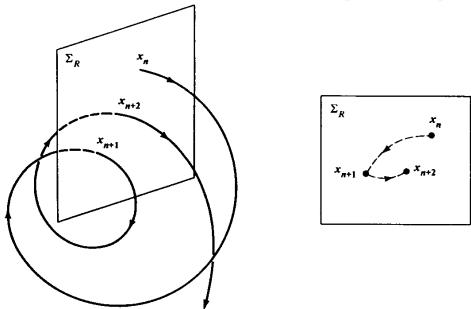
$$\dot{\mathbf{p}}_{x} + \dot{\mathbf{v}}_{3} = -\mathbf{x} - \mathbf{v}_{1} - 2(\mathbf{x} + \mathbf{v}_{1})(\mathbf{y} + \mathbf{v}_{2}) \implies \dot{\mathbf{p}}_{x} + \dot{\mathbf{v}}_{3} = -\mathbf{x} - \mathbf{v}_{1} - 2\mathbf{x}\mathbf{y} - 2\mathbf{x}\mathbf{v}_{2} - 2\mathbf{y}\mathbf{v}_{1} - 2\mathbf{v}_{N2} \implies \dot{\mathbf{v}}_{3} = -\mathbf{v}_{1} - 2\mathbf{y}\mathbf{v}_{1} - 2\mathbf{x}\mathbf{v}_{2}$$



Complete set of equations

Poincaré Surface of Section (PSS)

We can constrain the study of an N+1 degree of freedom Hamiltonian system to a 2N-dimensional subspace of the general phase space.

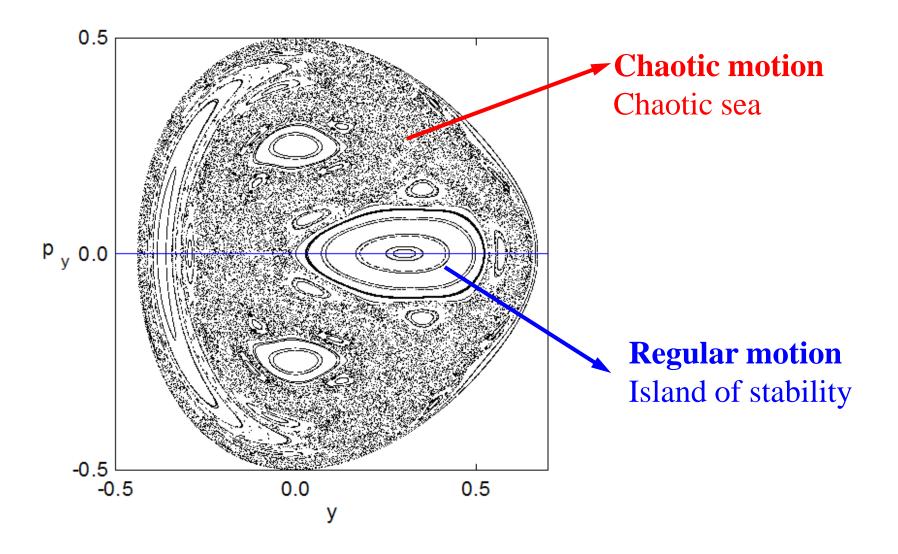


Lieberman & Lichtenberg, 1992, Regular and Chaotic Dynamics, Springer.

In general we can assume a PSS of the form q_{N+1} =constant. Then only variables $q_1,q_2,...,q_N,p_1,p_2,...,p_N$ are needed to describe the evolution of an orbit on the PSS, since p_{N+1} can be found from the Hamiltonian.

In this sense an N+1 degree of freedom Hamiltonian system corresponds to a 2N-dimensional symplectic map.

Hénon-Heiles system: PSS



Symplectic Maps

Consider an 2N-dimensional symplectic map T. In this case we have discrete time.

This is an area-preserving map whose Jacobian matrix

$$\mathbf{M} = \frac{\partial \mathbf{T}}{\partial \mathbf{x}} = \begin{bmatrix} \frac{\partial \mathbf{T}_{1}}{\partial \mathbf{x}_{1}} & \frac{\partial \mathbf{T}_{1}}{\partial \mathbf{x}_{2}} & \cdots & \frac{\partial \mathbf{T}_{1}}{\partial \mathbf{x}_{2N}} \\ \frac{\partial \mathbf{T}_{2}}{\partial \mathbf{x}_{1}} & \frac{\partial \mathbf{T}_{2}}{\partial \mathbf{x}_{2}} & \cdots & \frac{\partial \mathbf{T}_{2}}{\partial \mathbf{x}_{2N}} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial \mathbf{T}_{2N}}{\partial \mathbf{x}_{1}} & \frac{\partial \mathbf{T}_{2N}}{\partial \mathbf{x}_{2}} & \cdots & \frac{\partial \mathbf{T}_{2N}}{\partial \mathbf{x}_{2N}} \end{bmatrix}$$

satisfies

 $\mathbf{M}^{\mathrm{T}} \cdot \mathbf{J}_{2\mathrm{N}} \cdot \mathbf{M} = \mathbf{J}_{2\mathrm{N}}$

Symplectic Maps

The evolution of an orbit with initial condition $P(0)=(x_1(0), x_2(0), \dots, x_{2N}(0))$ is governed by the equations of map T $P(i+1)=T P(i) , i=0,1,2,\dots$

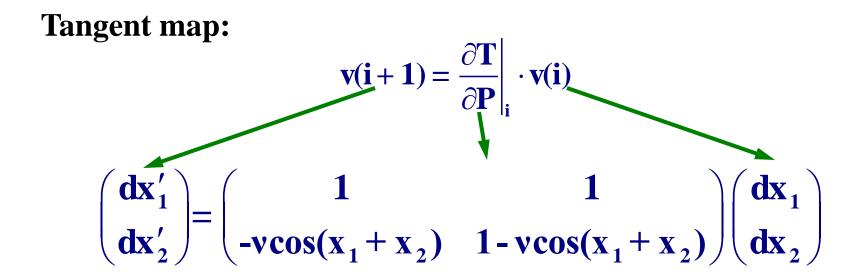
The evolution of an initial deviation vector $v(0) = (\delta x_1(0), \delta x_2(0), ..., \delta x_{2N}(0))$ is given by the corresponding tangent map

$$\mathbf{v}(\mathbf{i}+1) = \frac{\partial \mathbf{T}}{\partial \mathbf{P}}\Big|_{\mathbf{i}} \cdot \mathbf{v}(\mathbf{i}) , \mathbf{i} = 0, 1, 2, \dots$$

Example – 2D map

Equations of the map:

$$\begin{pmatrix} \mathbf{x}'_1 \\ \mathbf{x}'_2 \end{pmatrix} = \mathbf{T} \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix} \Rightarrow \begin{array}{l} \mathbf{x}'_1 &= \mathbf{x}_1 + \mathbf{x}_2 \\ \mathbf{x}'_2 &= \mathbf{x}_2 - \mathbf{v} \sin(\mathbf{x}_1 + \mathbf{x}_2) \end{array} \quad (\text{mod } 2\pi)$$



Lyapunov Exponents

Roughly speaking, the Lyapunov exponents of a given orbit characterize the mean exponential rate of divergence of trajectories surrounding it.

Consider an orbit in the 2N-dimensional phase space with initial condition x(0) and an initial deviation vector from it v(0). Then the mean exponential rate of divergence is:

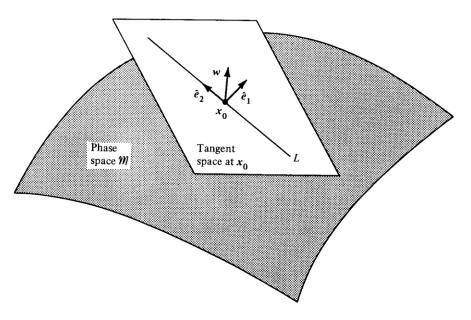
$$\sigma(\mathbf{x}(\mathbf{0}), \mathbf{v}(\mathbf{0})) = \lim_{t \to \infty} \frac{1}{t} \ln \frac{\|\mathbf{v}(t)\|}{\|\mathbf{v}(\mathbf{0})\|}$$

Lyapunov Exponents

There exists an Mdimensional basis $\{\hat{e}_i\}$ of v such that for any v, σ takes one of the M (possibly nondistinct) values

 $\sigma_{i}(\mathbf{x}(\mathbf{0})) = \sigma(\mathbf{x}(\mathbf{0}), \,\mathbf{\hat{e}}_{i})$

which are the Lyapunov exponents.



Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93

In autonomous Hamiltonian systems the M exponents are ordered in pairs of opposite sign numbers and two of them are 0.

Computation of the Maximal Lyapunov Exponent

Due to the exponential growth of v(t) (and of d(t)=||v(t)||) we renormalize v(t) from time to time.

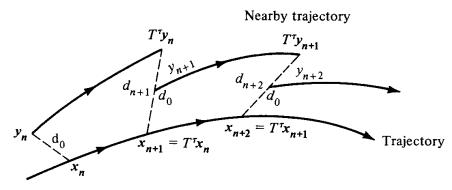


Figure 5.6. Numerical calculation of the maximal Liapunov characteristic exponent. Here y = x + v and τ is a finite interval of time (after Benettin *et al.*, 1976).

Then the Maximal Lyapunov exponent is computed as $\sigma_1 = \lim_{n \to \infty} \frac{1}{n\tau} \sum_{i=1}^n \ln d_i$

Maximum Lyapunov Exponent

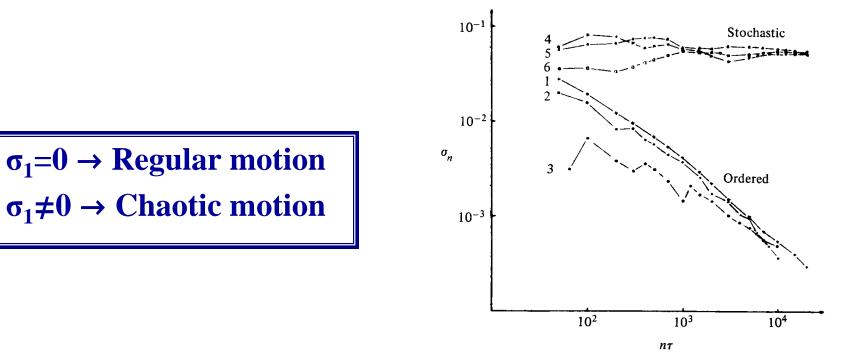


Figure 5.7. Behavior of σ_n at the intermediate energy E = 0.125 for initial points taken in the ordered (curves 1-3) or stochastic (curves 4-6) regions (after Benettin *et al.*, 1976).

If we start with more than one linearly independent deviation vectors they will align to the direction defined by the largest Lyapunov exponent for chaotic orbits.

The Smaller ALignment Index (SALI) method

Definition of Smaller Alignment Index (SALI)

Consider the 2N-dimensional phase space of a conservative dynamical system (symplectic map or Hamiltonian flow).

An orbit in that space with initial condition :

 $\mathbf{P}(\mathbf{0}) = (\mathbf{x}_1(\mathbf{0}), \mathbf{x}_2(\mathbf{0}), \dots, \mathbf{x}_{2N}(\mathbf{0}))$

and a deviation vector

 $v(0) = (\delta x_1(0), \delta x_2(0), \dots, \delta x_{2N}(0))$

The evolution in time (in maps the time is discrete and is equal to the number n of the iterations) of a deviation vector is defined by: •the variational equations (for Hamiltonian flows) and •the equations of the tangent map (for mappings)

Definition of SALI

We follow the evolution in time of <u>two different initial</u> <u>deviation vectors</u> $(v_1(0), v_2(0))$, and define SALI (Ch.S. 2001, J. Phys. A) as:

SALI(t) = min { $\|\hat{\mathbf{v}}_{1}(t) + \hat{\mathbf{v}}_{2}(t)\|, \|\hat{\mathbf{v}}_{1}(t) - \hat{\mathbf{v}}_{2}(t)\|$ }

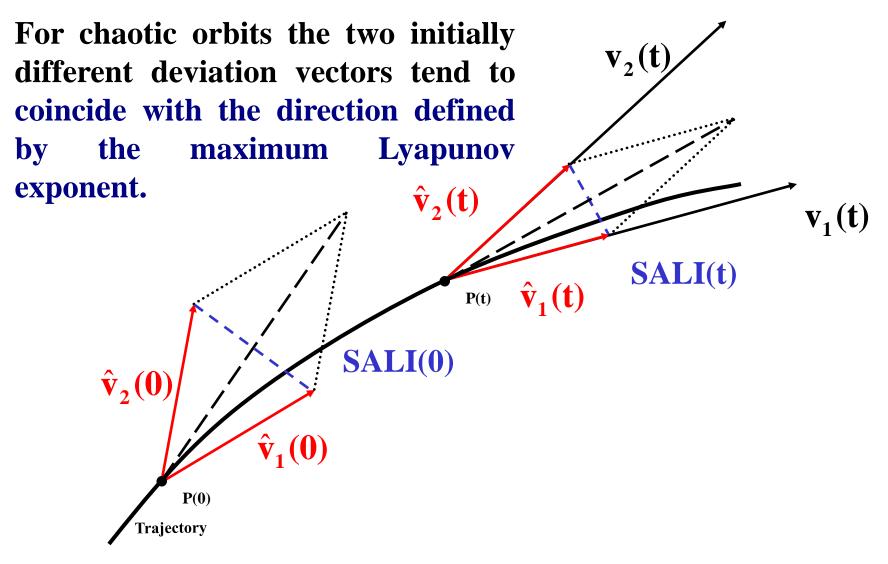
where

$$\hat{\mathbf{v}}_1(\mathbf{t}) = \frac{\mathbf{v}_1(\mathbf{t})}{\|\mathbf{v}_1(\mathbf{t})\|}$$

When the two vectors become collinear

SALI(t) \rightarrow **0**

Behavior of SALI for chaotic motion



Behavior of SALI for chaotic motion

The evolution of a deviation vector can be approximated by:

$$\mathbf{v}_{1}(t) = \sum_{i=1}^{n} c_{i}^{(1)} e^{\sigma_{i} t} \hat{\mathbf{u}}_{i} \approx c_{1}^{(1)} e^{\sigma_{1} t} \hat{\mathbf{u}}_{1} + c_{2}^{(1)} e^{\sigma_{2} t} \hat{\mathbf{u}}_{2}$$

where $\sigma_1 > \sigma_2 \ge ... \ge \sigma_n$ are the Lyapunov exponents and $\hat{u}_i = 1, 2, ...,$ 2N the corresponding eigendirections.

In this approximation, we derive a leading order estimate of the ratio

$$\frac{\mathbf{v}_{1}(t)}{\|\mathbf{v}_{1}(t)\|} \approx \frac{\mathbf{c}_{1}^{(1)}\mathbf{e}^{\sigma_{1}t}\hat{\mathbf{u}}_{1} + \mathbf{c}_{2}^{(1)}\mathbf{e}^{\sigma_{2}t}\hat{\mathbf{u}}_{2}}{\left\|\mathbf{c}_{1}^{(1)}\right\|\mathbf{e}^{\sigma_{1}t}} = \pm \hat{\mathbf{u}}_{1} + \frac{\mathbf{c}_{2}^{(1)}}{\left\|\mathbf{c}_{1}^{(1)}\right\|} \mathbf{e}^{-(\sigma_{1}-\sigma_{2})t}\hat{\mathbf{u}}_{2}$$

and an analogous expression for v_2

$$\frac{\mathbf{v}_{2}(\mathbf{t})}{\|\mathbf{v}_{2}(\mathbf{t})\|} \approx \frac{\mathbf{c}_{1}^{(2)}\mathbf{e}^{\sigma_{1}t}\hat{\mathbf{u}}_{1} + \mathbf{c}_{2}^{(2)}\mathbf{e}^{\sigma_{2}t}\hat{\mathbf{u}}_{2}}{\left|\mathbf{c}_{1}^{(2)}\right|\mathbf{e}^{\sigma_{1}t}} = \pm \hat{\mathbf{u}}_{1} + \frac{\mathbf{c}_{2}^{(2)}}{\left|\mathbf{c}_{1}^{(2)}\right|}\mathbf{e}^{-(\sigma_{1}-\sigma_{2})t}\hat{\mathbf{u}}_{2}$$

So we get:

So we get.

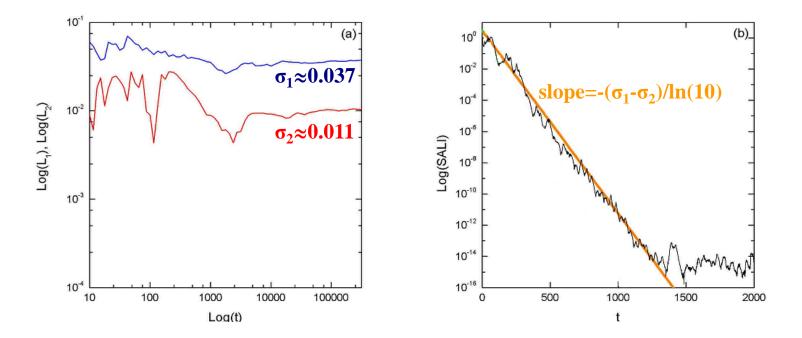
$$SALI(t) = \min\left\{ \left\| \frac{\mathbf{v}_{1}(t)}{\|\mathbf{v}_{1}(t)\|} + \frac{\mathbf{v}_{2}(t)}{\|\mathbf{v}_{2}(t)\|} \right\|, \left\| \frac{\mathbf{v}_{1}(t)}{\|\mathbf{v}_{1}(t)\|} - \frac{\mathbf{v}_{2}(t)}{\|\mathbf{v}_{2}(t)\|} \right\| \right\} \approx \left| \frac{\mathbf{c}_{2}^{(1)}}{|\mathbf{c}_{1}^{(1)}|} \pm \frac{\mathbf{c}_{2}^{(2)}}{|\mathbf{c}_{1}^{(2)}|} \right| e^{-(\sigma_{1} - \sigma_{2})t}$$

Behavior of SALI for chaotic motion

We test the validity of the approximation $\frac{SALI \propto e^{-(\sigma 1 - \sigma^2)t}}{(Ch.S., Antonopoulos, Bountis, Vrahatis, 2004, J. Phys. A) for a chaotic orbit of the 3D Hamiltonian$

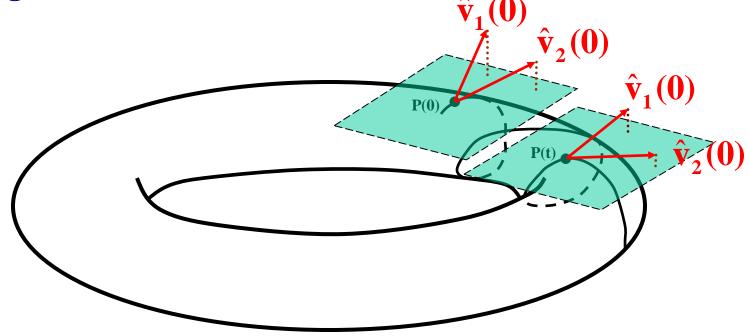
$$\mathbf{H} = \sum_{i=1}^{3} \frac{\omega_i}{2} (\mathbf{q}_i^2 + \mathbf{p}_i^2) + \mathbf{q}_1^2 \mathbf{q}_2 + \mathbf{q}_1^2 \mathbf{q}_3$$

with ω_1 =1, ω_2 =1.4142, ω_3 =1.7321, H=0.09



Behavior of SALI for regular motion

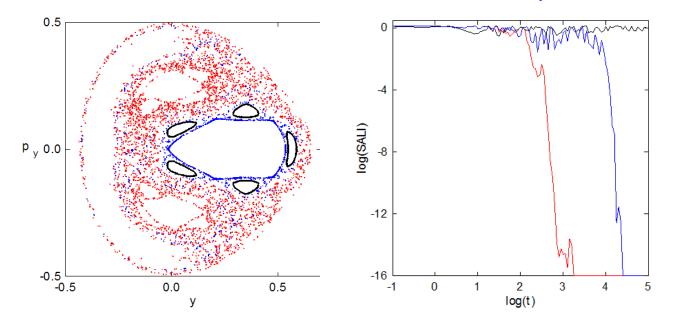
Regular motion occurs on a torus and two different initial deviation vectors become tangent to the torus, generally having different directions.

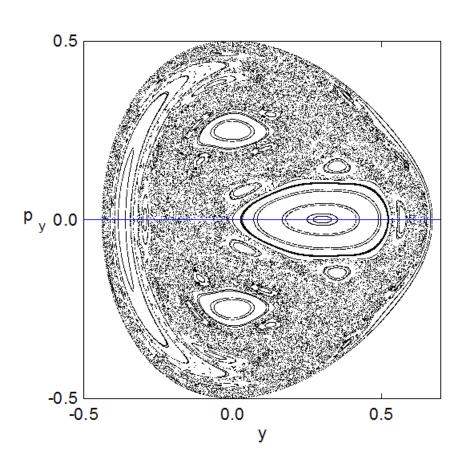


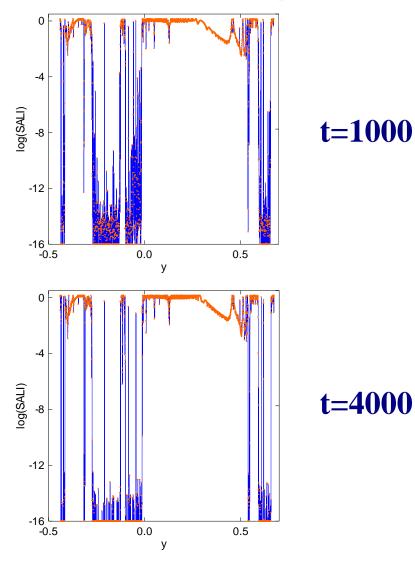
As an example, we consider the 2D Hénon-Heiles system:

$$H_2 = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$$

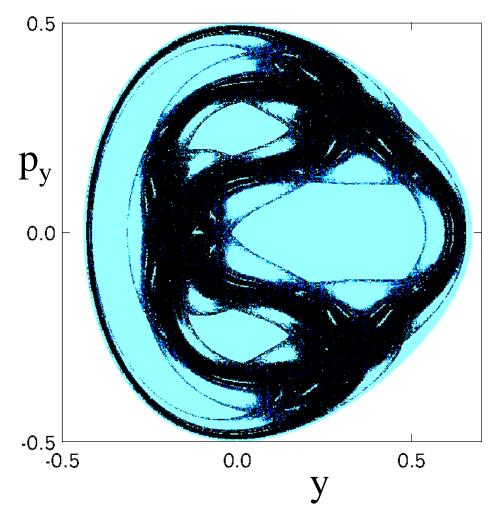
For E=1/8 we consider the orbits with initial conditions: Regular orbit, x=0, y=0.55, $p_x=0.2417$, $p_y=0$ Chaotic orbit, x=0, y=-0.016, $p_x=0.49974$, $p_y=0$ Chaotic orbit, x=0, y=-0.01344, $p_x=0.49982$, $p_y=0$





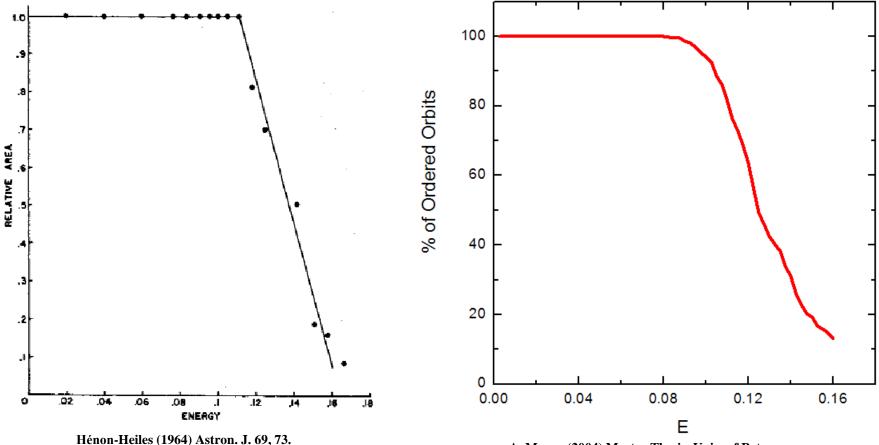


t=4000





The percentage of non chaotic orbits (SALI > 10⁻⁸ for t=1000)

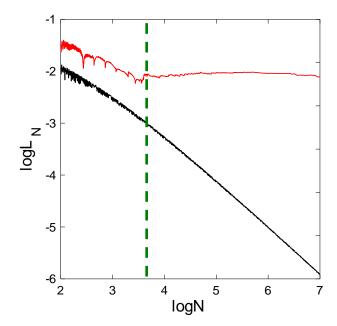


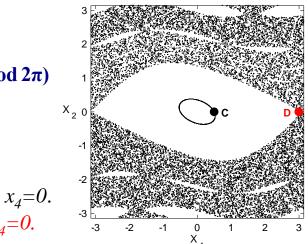
A. Manos (2004) Master Thesis, Univ. of Patras

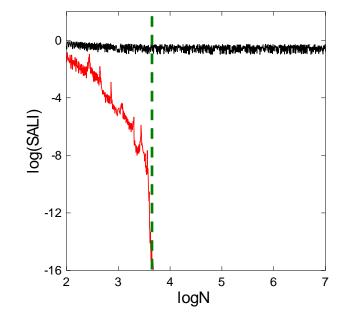
Applications – 4D map

$$\begin{aligned} \mathbf{x}_{1}' &= \mathbf{x}_{1} + \mathbf{x}_{2} \\ \mathbf{x}_{2}' &= \mathbf{x}_{2} - \mathbf{v} \sin(\mathbf{x}_{1} + \mathbf{x}_{2}) - \mu \left[1 - \cos(\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4})\right] \\ \mathbf{x}_{3}' &= \mathbf{x}_{3} + \mathbf{x}_{4} \\ \mathbf{x}_{4}' &= \mathbf{x}_{4} - \kappa \sin(\mathbf{x}_{3} + \mathbf{x}_{4}) - \mu \left[1 - \cos(\mathbf{x}_{1} + \mathbf{x}_{2} + \mathbf{x}_{3} + \mathbf{x}_{4})\right] \end{aligned}$$
(motion)

For v=0.5, κ =0.1, μ =0.1 we consider the orbits: *regular orbit C* with initial conditions x_1 =0.5, x_2 =0, x_3 =0.5, x_4 =0. *chaotic orbit D* with initial conditions x_1 =3, x_2 =0, x_3 =0.5, x_4 =0.







Applications – 4D Accelerator map

We consider the 4D symplectic map

 $\begin{pmatrix} x_1' \\ x_2' \\ x_3' \\ x_4' \end{pmatrix} = \begin{pmatrix} \cos\omega_1 & -\sin\omega_1 & 0 & 0 \\ \sin\omega_1 & \cos\omega_1 & 0 & 0 \\ 0 & 0 & \cos\omega_2 & -\sin\omega_2 \\ 0 & 0 & \sin\omega_2 & \cos\omega_2 \end{pmatrix} \times \begin{pmatrix} x_1 \\ x_2 + x_1^2 - x_3^2 \\ x_3 \\ x_4 - 2x_1x_3 \end{pmatrix}$

describing the instantaneous sextupole 'kicks' experienced by a particle as it passes through an accelerator (Turchetti & Scandale 1991, Bountis & Tompaidis 1991, Vrahatis et al. 1996, 1997).

 x_1 and x_3 are the particle's deflections from the ideal circular orbit, in the horizontal and vertical directions respectively.

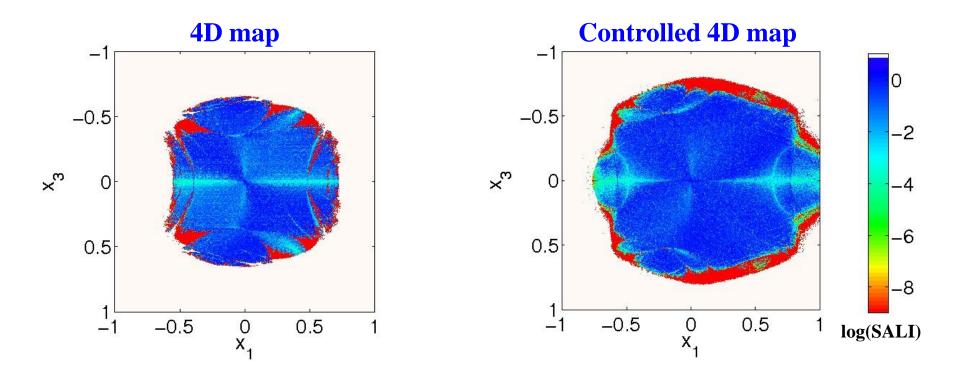
x₂ and x₄ are the associated momenta

 ω_1, ω_2 are related to the accelerator's tunes q_x, q_y by $\omega_1 = 2\pi q_x, \omega_2 = 2\pi q_y$

Our goal is to estimate the region of stability of the particle's motion, the socalled <u>dynamic aperture</u> of the beam (Bountis, Ch.S., 2006, Nucl. Inst Meth. Phys Res. A) and to increase its size using chaos control techniques (Boreaux, Carletti, Ch.S., Vittot, 2012, Commun. Nonlinear Sci. Num. Simulat. – Boreaux, Carletti, Ch.S., Papaphilippou, Vittot, 2012, Int. J. Bifur. Chaos).

4D Accelerator map – "Global" study

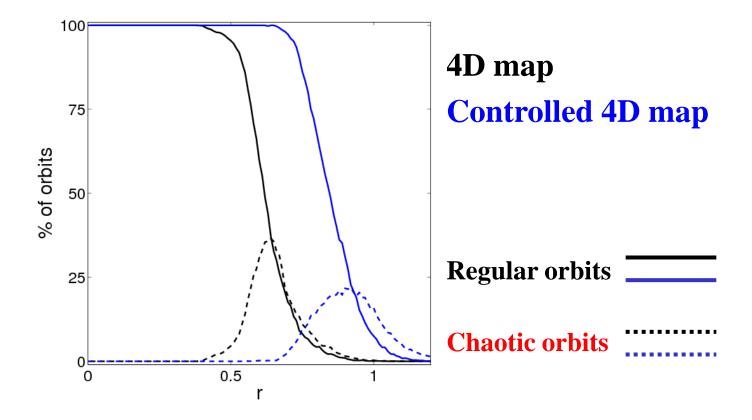
Regions of different values of the SALI on the subspace $x_2(0)=x_4(0)=0$, after 10⁵ iterations (q_x=0.61803 q_y=0.4152)



4D Accelerator map – "Global" study

Increase of the dynamic aperture

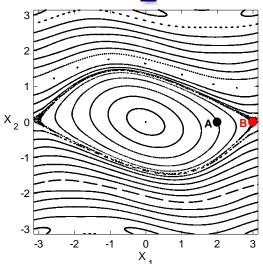
We evolve many orbits in 4D hyperspheres of radius r centered at $x_1=x_2=x_3=x_4=0$, for 10⁵ iterations.

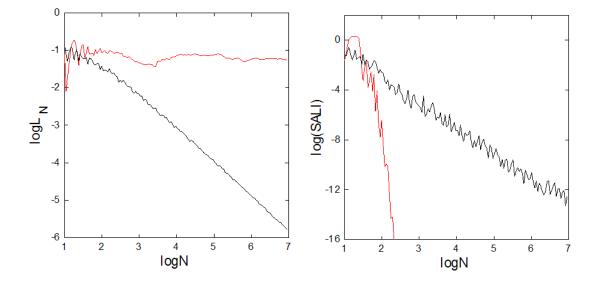


Applications – 2D map

$$\begin{array}{rcl} x_1' &=& x_1 + x_2 \\ x_2' &=& x_2 - v \sin(x_1 + x_2) \end{array} & (\text{mod } 2\pi) \end{array}$$

For v=0.5 we consider the orbits: *regular orbit A* with initial conditions $x_1=2$, $x_2=0$. *chaotic orbit B* with initial conditions $x_1=3$, $x_2=0$.





Behavior of SALI

2D maps

SALI→0 both for regular and chaotic orbits

following, however, completely different time rates which allows us to distinguish between the two cases.

Hamiltonian flows and multidimensional maps

SALI→0 for chaotic orbits

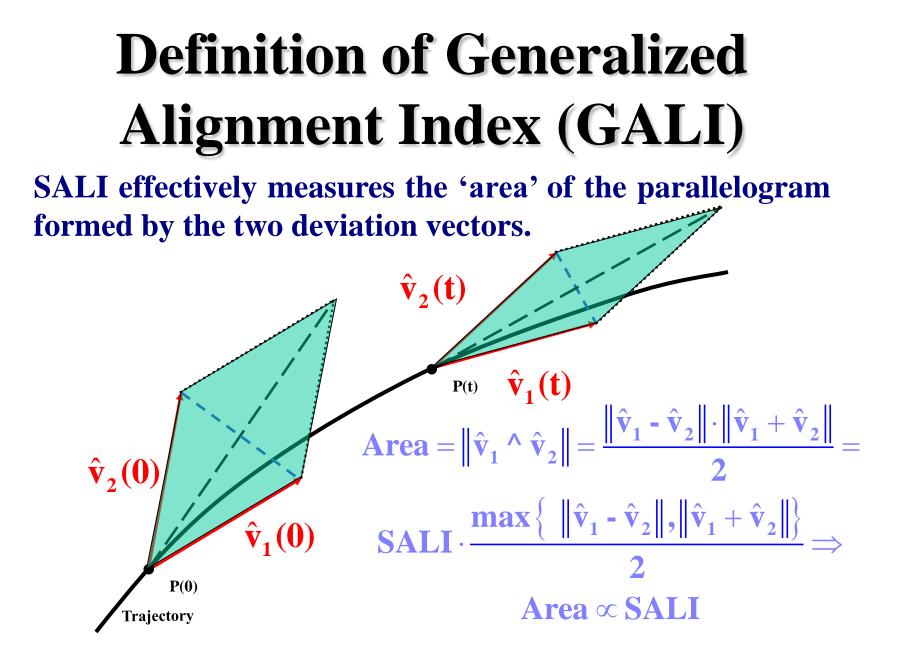
SALI→constant ≠ 0 for regular orbits

Questions

Can we generalize SALI so that the new index:

- Can rapidly reveal the nature of chaotic orbits with $\sigma_1 \approx \sigma_2 (\text{SALI} \propto e^{-(\sigma_1 \sigma_2)t})$?
- Depends on several Lyapunov exponents for chaotic orbits?
- Exhibits power-law decay for regular orbits depending on the dimensionality of the tangent space of the reference orbit as for 2D maps?

The Generalized ALignment Indices (GALIs) method



Definition of GALI

In the case of an N degree of freedom Hamiltonian system or a 2N symplectic map we follow the evolution of

k deviation vectors with $2 \le k \le 2N$,

and define (Ch.S., Bountis, Antonopoulos, 2007, Physica D) the Generalized Alignment Index (GALI) of order k :

$$\mathbf{GALI}_{\mathbf{k}}(\mathbf{t}) = \left\| \hat{\mathbf{v}}_{1}(\mathbf{t}) \wedge \hat{\mathbf{v}}_{2}(\mathbf{t}) \wedge \dots \wedge \hat{\mathbf{v}}_{\mathbf{k}}(\mathbf{t}) \right\|$$

where

$$\hat{\mathbf{v}}_1(\mathbf{t}) = \frac{\mathbf{v}_1(\mathbf{t})}{\left\|\mathbf{v}_1(\mathbf{t})\right\|}$$

Wedge product

We consider as a basis of the 2N-dimensional tangent space of the system the usual set of orthonormal vectors:

 $\hat{\mathbf{e}}_1 = (\mathbf{1}, \mathbf{0}, \mathbf{0}, ..., \mathbf{0}), \ \hat{\mathbf{e}}_2 = (\mathbf{0}, \mathbf{1}, \mathbf{0}, ..., \mathbf{0}), ..., \ \hat{\mathbf{e}}_{2N} = (\mathbf{0}, \mathbf{0}, \mathbf{0}, ..., \mathbf{1})$

Then for k deviation vectors we have:

$$\hat{\mathbf{v}}_{1} \\ \hat{\mathbf{v}}_{2} \\ \vdots \\ \hat{\mathbf{v}}_{k} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{11} & \mathbf{v}_{12} & \cdots & \mathbf{v}_{12N} \\ \mathbf{v}_{21} & \mathbf{v}_{22} & \cdots & \mathbf{v}_{22N} \\ \vdots & \vdots & & \vdots \\ \mathbf{v}_{k1} & \mathbf{v}_{k2} & \cdots & \mathbf{v}_{k2N} \end{bmatrix} \cdot \begin{bmatrix} \hat{\mathbf{e}}_{1} \\ \hat{\mathbf{e}}_{2} \\ \vdots \\ \hat{\mathbf{e}}_{2N} \end{bmatrix}$$

$$\hat{\mathbf{v}}_{1} \land \hat{\mathbf{v}}_{2} \land \cdots \land \hat{\mathbf{v}}_{k} = \sum_{1 \le i_{1} < i_{2} < \cdots < i_{k} \le 2N} \begin{bmatrix} \mathbf{v}_{1i_{1}} & \mathbf{v}_{1i_{2}} & \cdots & \mathbf{v}_{1i_{k}} \\ \mathbf{v}_{2i_{1}} & \mathbf{v}_{2i_{2}} & \cdots & \mathbf{v}_{2i_{k}} \\ \vdots & \vdots & & \vdots \\ \mathbf{v}_{ki_{1}} & \mathbf{v}_{ki_{2}} & \cdots & \mathbf{v}_{ki_{k}} \end{bmatrix}} \hat{\mathbf{e}}_{i_{1}} \land \hat{\mathbf{e}}_{i_{2}} \land \cdots \land \hat{\mathbf{e}}_{i_{k}}$$

Norm of wedge product

We define as 'norm' of the wedge product the quantity :

$$\left\| \hat{\mathbf{v}}_{1} \wedge \hat{\mathbf{v}}_{2} \wedge \dots \wedge \hat{\mathbf{v}}_{k} \right\| = \left\{ \sum_{\substack{1 \le i_{1} < i_{2} < \dots < i_{k} \le 2N \\ \mathbf{v}_{1i_{1}} & \mathbf{v}_{1i_{2}} & \dots & \mathbf{v}_{1i_{k}} \\ \mathbf{v}_{2i_{1}} & \mathbf{v}_{2i_{2}} & \dots & \mathbf{v}_{2i_{k}} \\ \vdots & \vdots & & \vdots \\ \mathbf{v}_{ki_{1}} & \mathbf{v}_{ki_{2}} & \dots & \mathbf{v}_{ki_{k}} \\ \end{array} \right\|^{2} \right\}^{1/2}$$

Computation of GALI - Example

Let us compute $GALI_3$ in the case of 2D Hamiltonian system (4dimensional phase space).

$$\begin{bmatrix} \hat{\mathbf{v}}_{1} \\ \hat{\mathbf{v}}_{2} \\ \hat{\mathbf{v}}_{3} \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{11} & \mathbf{v}_{12} & \mathbf{v}_{13} & \mathbf{v}_{14} \\ \mathbf{v}_{21} & \mathbf{v}_{22} & \mathbf{v}_{23} & \mathbf{v}_{24} \\ \mathbf{v}_{31} & \mathbf{v}_{32} & \mathbf{v}_{33} & \mathbf{v}_{34} \end{bmatrix} \cdot \begin{bmatrix} \hat{\mathbf{e}}_{1} \\ \hat{\mathbf{e}}_{2} \\ \hat{\mathbf{e}}_{3} \\ \hat{\mathbf{e}}_{4} \end{bmatrix}$$

$$\mathbf{GALI}_{3} = \| \hat{\mathbf{v}}_{1} \wedge \hat{\mathbf{v}}_{2} \wedge \hat{\mathbf{v}}_{3} \| = \left\{ \begin{vmatrix} \mathbf{v}_{11} & \mathbf{v}_{12} & \mathbf{v}_{13} \\ \mathbf{v}_{11} & \mathbf{v}_{12} & \mathbf{v}_{13} \\ \mathbf{v}_{21} & \mathbf{v}_{22} & \mathbf{v}_{23} \\ \mathbf{v}_{31} & \mathbf{v}_{32} & \mathbf{v}_{33} \end{vmatrix}^{2} + \begin{vmatrix} \mathbf{v}_{11} & \mathbf{v}_{12} & \mathbf{v}_{14} \\ \mathbf{v}_{21} & \mathbf{v}_{22} & \mathbf{v}_{24} \\ \mathbf{v}_{31} & \mathbf{v}_{32} & \mathbf{v}_{34} \end{vmatrix}^{2} + \left| \begin{array}{c} \mathbf{v}_{12} & \mathbf{v}_{13} & \mathbf{v}_{14} \\ \mathbf{v}_{21} & \mathbf{v}_{23} & \mathbf{v}_{24} \\ \mathbf{v}_{31} & \mathbf{v}_{33} & \mathbf{v}_{34} \end{vmatrix}^{2} + \left| \begin{array}{c} \mathbf{v}_{12} & \mathbf{v}_{13} & \mathbf{v}_{14} \\ \mathbf{v}_{22} & \mathbf{v}_{23} & \mathbf{v}_{24} \\ \mathbf{v}_{32} & \mathbf{v}_{33} & \mathbf{v}_{34} \end{vmatrix}^{2} \right\}^{1/2}$$

Efficient computation of GALI

For k deviation vectors:

$$\begin{bmatrix} \hat{\mathbf{v}}_1 \\ \hat{\mathbf{v}}_2 \\ \vdots \\ \hat{\mathbf{v}}_k \end{bmatrix} = \begin{bmatrix} \mathbf{v}_{11} & \mathbf{v}_{12} & \cdots & \mathbf{v}_{12N} \\ \mathbf{v}_{21} & \mathbf{v}_{22} & \cdots & \mathbf{v}_{22N} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{v}_{k1} & \mathbf{v}_{k2} & \cdots & \mathbf{v}_{k2N} \end{bmatrix} \cdot \begin{bmatrix} \hat{\mathbf{e}}_1 \\ \hat{\mathbf{e}}_2 \\ \vdots \\ \hat{\mathbf{e}}_2 \\ \vdots \\ \hat{\mathbf{e}}_{2N} \end{bmatrix} = \mathbf{A} \cdot \begin{bmatrix} \hat{\mathbf{e}}_1 \\ \hat{\mathbf{e}}_2 \\ \vdots \\ \hat{\mathbf{e}}_{2N} \end{bmatrix}$$

the 'norm' of the wedge product is given by:

$$\|\hat{\mathbf{v}}_{1} \wedge \hat{\mathbf{v}}_{2} \wedge \dots \wedge \hat{\mathbf{v}}_{k}\| = \left\{ \sum_{\substack{1 \le i_{1} < i_{2} < \dots < i_{k} \le 2N \\ \mathbf{v}_{1} < \mathbf{v}_{2} < \mathbf{v}_{1} < \mathbf{v}_{2} < \mathbf{v}_{2} < \mathbf{v}_{2} < \mathbf{v}_{2} < \mathbf{v}_{2} < \mathbf{v}_{2} \\ \vdots & \vdots & \vdots \\ \mathbf{v}_{k i_{1}} & \mathbf{v}_{k i_{2}} & \cdots & \mathbf{v}_{k i_{k}} \\ \end{array} \right\}^{2} \right\}^{1/2} = \sqrt{\det(\mathbf{A} \cdot \mathbf{A}^{\mathrm{T}})}$$

Efficient computation of GALI

From Singular Value Decomposition (SVD) of A^T we get: $A^T = U \cdot W \cdot V^T$

where U is a column-orthogonal $2N \times k$ matrix (U^T·U=I), V^T is a k×k orthogonal matrix (V·V^T=I), and W is a diagonal k×k matrix with positive or zero elements, the so-called singular values. So, we get:

$$det(\mathbf{A} \cdot \mathbf{A}^{\mathrm{T}}) = det(\mathbf{V} \cdot \mathbf{W}^{\mathrm{T}} \cdot \mathbf{U}^{\mathrm{T}} \cdot \mathbf{U} \cdot \mathbf{W} \cdot \mathbf{V}^{\mathrm{T}}) = det(\mathbf{V} \cdot \mathbf{W} \cdot \mathbf{I} \cdot \mathbf{W} \cdot \mathbf{V}^{\mathrm{T}}) = det(\mathbf{V} \cdot \mathbf{W}^{2} \cdot \mathbf{V}^{\mathrm{T}}) = det(\mathbf{V} \cdot diag(\mathbf{w}_{1}^{2}, \mathbf{w}_{2}^{2}, \dots, \mathbf{w}_{k}^{2}) \cdot \mathbf{V}^{\mathrm{T}}) = \prod_{i=1}^{k} \mathbf{w}_{i}^{2}$$

Thus, GALI_k is computed by:

$$\mathbf{GALI}_{k} = \sqrt{\mathbf{det}(\mathbf{A} \cdot \mathbf{A}^{\mathrm{T}})} = \prod_{i=1}^{k} \mathbf{w}_{i} \Longrightarrow \mathbf{log}(\mathbf{GALI}_{k}) = \sum_{i=1}^{k} \mathbf{log}(\mathbf{w}_{i})$$

GALI_k (2≤k≤2N) tends exponentially to zero with exponents that involve the values of the first k largest Lyapunov exponents $\sigma_1, \sigma_2, ..., \sigma_k$:

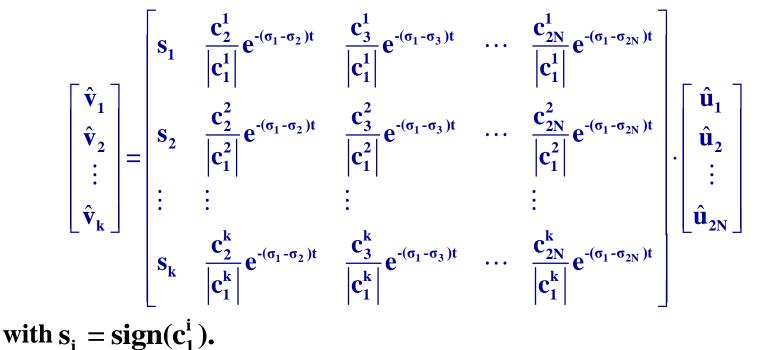
$$\mathbf{GALI}_{k}(\mathbf{t}) \propto \mathbf{e}^{-[(\sigma_{1}-\sigma_{2})+(\sigma_{1}-\sigma_{3})+\ldots+(\sigma_{1}-\sigma_{k})]\mathbf{t}}$$

The above relation is valid even if some Lyapunov exponents are equal, or very close to each other.

Using the approximation:

$$\mathbf{v}_{i}(t) = \sum_{j=1}^{2N} \mathbf{c}_{j}^{i} \mathbf{e}^{\sigma_{j} t} \hat{\mathbf{u}}_{j} = \mathbf{c}_{1}^{i} \mathbf{e}^{\sigma_{1} t} \hat{\mathbf{u}}_{1} + \mathbf{c}_{2}^{i} \mathbf{e}^{\sigma_{2} t} \hat{\mathbf{u}}_{2} + \dots + \mathbf{c}_{2N}^{i} \mathbf{e}^{\sigma_{2N} t} \hat{\mathbf{u}}_{2N}, \qquad \left\| \mathbf{v}_{i}(t) \right\| \approx \left| \mathbf{c}_{1}^{i} \right| \mathbf{e}^{\sigma_{1} t}$$

where $\sigma_1 > \sigma_2 \ge ... \ge \sigma_n$ are the Lyapunov exponents, and \hat{u}_j j=1, 2, ..., 2N the corresponding eigendirections, we get



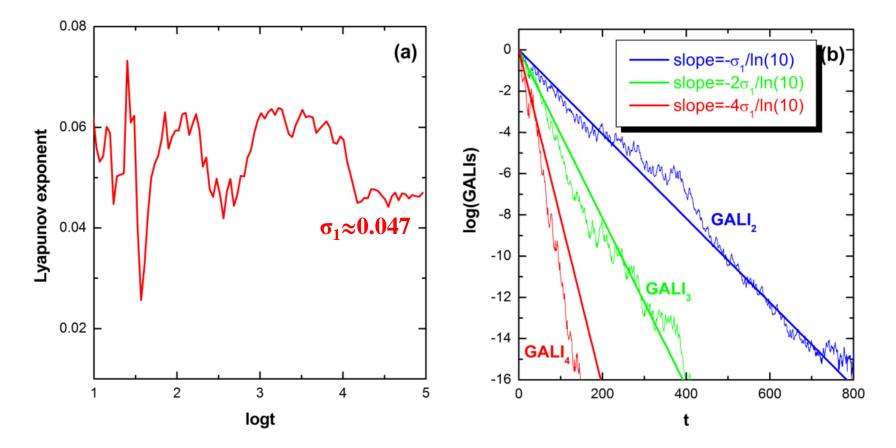
From all determinants appearing in the definition of $GALI_k$ the one that decreases <u>the slowest</u> is the one containing the first k columns of the previous matrix:

$$\begin{vmatrix} \mathbf{s}_{1} & \frac{\mathbf{c}_{2}^{1}}{|\mathbf{c}_{1}^{1}|} \mathbf{e}^{-(\sigma_{1}-\sigma_{2})t} & \frac{\mathbf{c}_{3}^{1}}{|\mathbf{c}_{1}^{1}|} \mathbf{e}^{-(\sigma_{1}-\sigma_{3})t} & \cdots & \frac{\mathbf{c}_{k}^{1}}{|\mathbf{c}_{1}^{1}|} \mathbf{e}^{-(\sigma_{1}-\sigma_{k})t} \\ \mathbf{s}_{2} & \frac{\mathbf{c}_{2}^{2}}{|\mathbf{c}_{1}^{2}|} \mathbf{e}^{-(\sigma_{1}-\sigma_{2})t} & \frac{\mathbf{c}_{3}^{2}}{|\mathbf{c}_{1}^{2}|} \mathbf{e}^{-(\sigma_{1}-\sigma_{3})t} & \cdots & \frac{\mathbf{c}_{k}^{2}}{|\mathbf{c}_{1}^{2}|} \mathbf{e}^{-(\sigma_{1}-\sigma_{k})t} \\ \vdots & \vdots & \vdots & \vdots \\ \mathbf{s}_{k} & \frac{\mathbf{c}_{2}^{k}}{|\mathbf{c}_{1}^{k}|} \mathbf{e}^{-(\sigma_{1}-\sigma_{2})t} & \frac{\mathbf{c}_{3}^{k}}{|\mathbf{c}_{1}^{k}|} \mathbf{e}^{-(\sigma_{1}-\sigma_{3})t} & \cdots & \frac{\mathbf{c}_{k}^{k}}{|\mathbf{c}_{1}^{k}|} \mathbf{e}^{-(\sigma_{1}-\sigma_{k})t} \end{vmatrix} = \begin{vmatrix} \mathbf{s}_{1} & \frac{\mathbf{c}_{2}^{1}}{|\mathbf{c}_{1}^{1}|} & \frac{\mathbf{c}_{1}^{1}}{|\mathbf{c}_{1}^{1}|} \\ \mathbf{s}_{2} & \frac{\mathbf{c}_{2}^{2}}{|\mathbf{c}_{1}^{2}|} & \frac{\mathbf{c}_{3}^{2}}{|\mathbf{c}_{1}^{2}|} & \cdots & \frac{\mathbf{c}_{k}^{k}}{|\mathbf{c}_{1}-\sigma_{k}-\mathbf{c}_{k}-\mathbf$$

Thus

 $GALI_{k}(t) \propto e^{-[(\sigma_{1}-\sigma_{2})+(\sigma_{1}-\sigma_{3})+...+(\sigma_{1}-\sigma_{k})]t}$

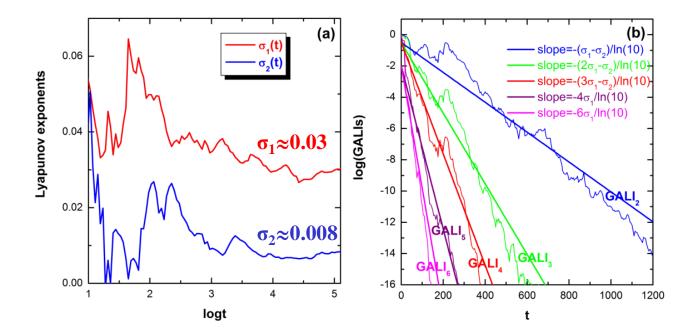
2D Hamiltonian (Hénon-Heiles system)



3D system:

$$\mathbf{H}_{3} = \sum_{i=1}^{3} \frac{\omega_{i}}{2} (\mathbf{q}_{i}^{2} + \mathbf{p}_{i}^{2}) + \mathbf{q}_{1}^{2} \mathbf{q}_{2} + \mathbf{q}_{1}^{2} \mathbf{q}_{3}$$

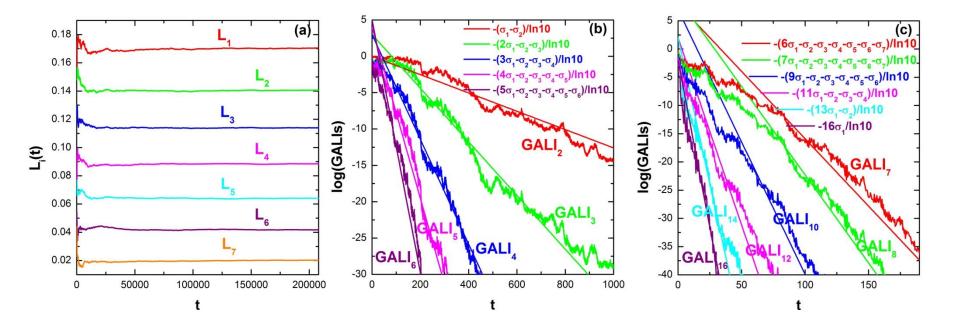
with $\omega_1 = 1$, $\omega_2 = \sqrt{2}$, $\omega_3 = \sqrt{3}$, H₃=0.09.



N particles Fermi-Pasta-Ulam (FPU) system:

$$\mathbf{H} = \frac{1}{2} \sum_{i=1}^{N} \mathbf{p}_{i}^{2} + \sum_{i=0}^{N} \left[\frac{1}{2} (\mathbf{q}_{i+1} - \mathbf{q}_{i})^{2} + \frac{\beta}{4} (\mathbf{q}_{i+1} - \mathbf{q}_{i})^{4} \right]$$

with fixed boundary conditions, N=8 and β =1.5.



Behavior of GALI_k for regular motion

If the motion occurs on an s-dimensional torus with $s \le N$ then the behavior of $GALI_k$ is given by (Ch.S., Bountis, Antonopoulos, 2008, Eur. Phys. J. Sp. Top.):

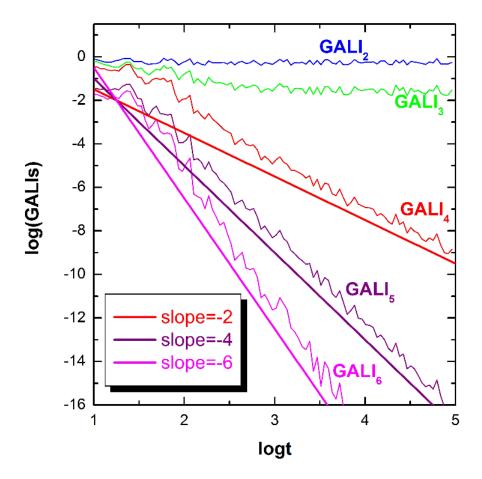
 $GALI_{k}(t) \propto \begin{cases} constant & \text{if } 2 \le k \le s \\ \frac{1}{t^{k-s}} & \text{if } s < k \le 2N-s \\ \frac{1}{t^{2(k-N)}} & \text{if } 2N-s < k \le 2N \end{cases}$

while in the common case with s=N we have :

$$GALI_{k}(t) \propto \begin{cases} constant & \text{if} \quad 2 \leq k \leq N \\ \\ \frac{1}{t^{2(k-N)}} & \text{if} \quad N < k \leq 2N \end{cases}$$

Behavior of GALI_k for regular motion

3D Hamiltonian

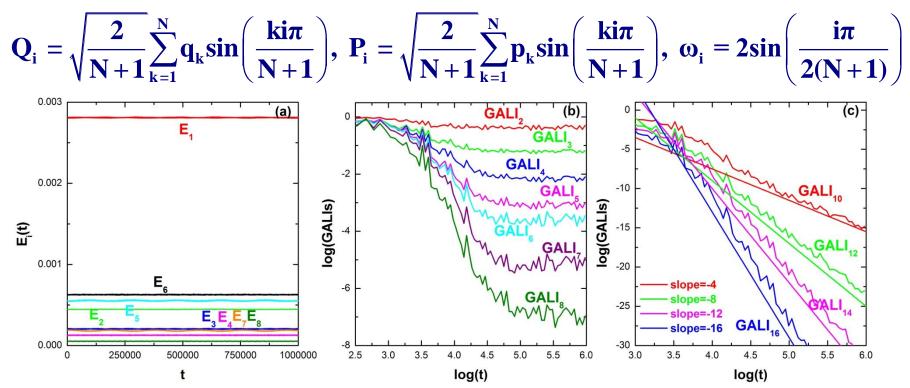


Behavior of GALI_k for regular motion

N=8 FPU system: The unperturbed Hamiltonian (β =0) is written as a sum of the so-called harmonic energies E_i:

$$E_{i} = \frac{1}{2} (P_{i}^{2} + \omega_{i}^{2}Q_{i}^{2}), i = 1, ..., N$$

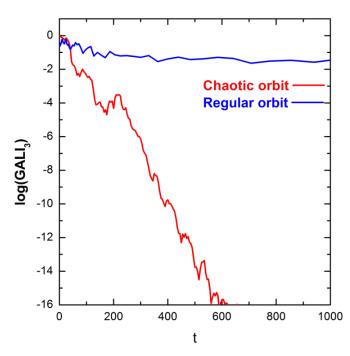
with:



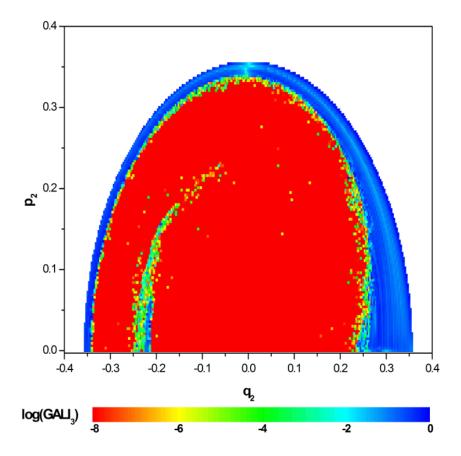
Global dynamics

• GALI₂ (practically equivalent to the use of SALI)

• GALI_N Chaotic motion: GALI_N→0 (exponential decay) Regular motion: GALI_N→constant≠0



3D Hamiltonian Subspace $q_3=p_3=0$, $p_2\geq 0$ for t=1000.

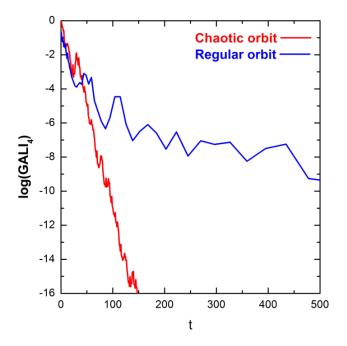


Global dynamics

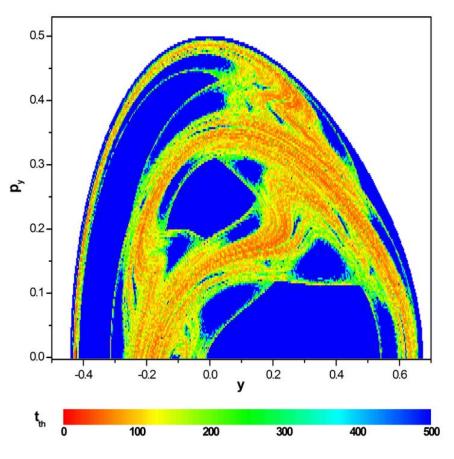
GALI_k with k>N

The index tends to zero both for regular and chaotic orbits but with completely different time rates:

Chaotic motion: exponential decay Regular motion: power law



2D Hamiltonian (Hénon-Heiles) Time needed for GALI₄<10⁻¹²



Behavior of GALI_k

Chaotic motion:

 $GALI_k \rightarrow 0$ exponential decay

$$GALI_{k}(t) \propto e^{-[(\sigma_{1}-\sigma_{2})+(\sigma_{1}-\sigma_{3})+...+(\sigma_{1}-\sigma_{k})]t}$$

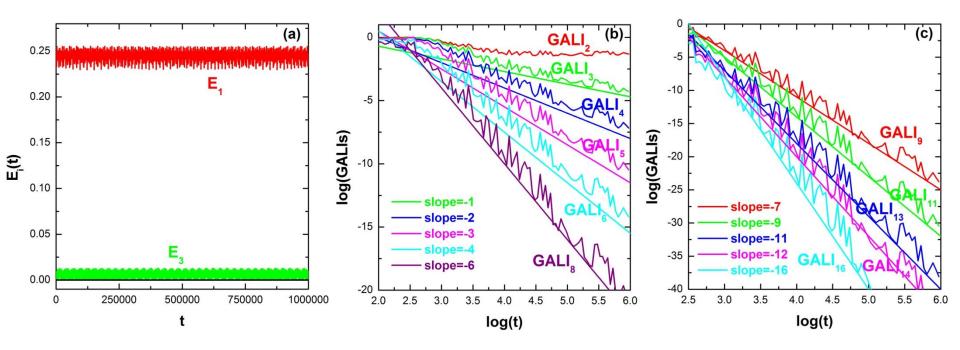
Regular motion:

 $GALI_k \rightarrow constant \neq 0$ or $GALI_k \rightarrow 0$ power law decay

$$\begin{array}{lll} GALI_{k}(t) \propto \begin{cases} constant & \mbox{if} & 2 \leq k \leq s \\ \\ \displaystyle \frac{1}{t^{k \cdot s}} & \mbox{if} & s < k \leq 2N \cdot s \\ \\ \displaystyle \frac{1}{t^{2(k \cdot N)}} & \mbox{if} & 2N \cdot s < k \leq 2N \end{cases}$$

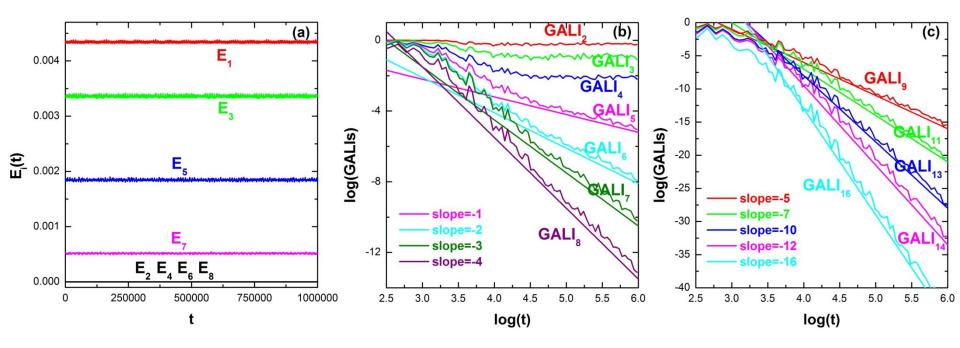
Regular motion on low-dimensional tori

A regular orbit lying on a 2-dimensional torus for the N=8 FPU system.



Regular motion on low-dimensional tori

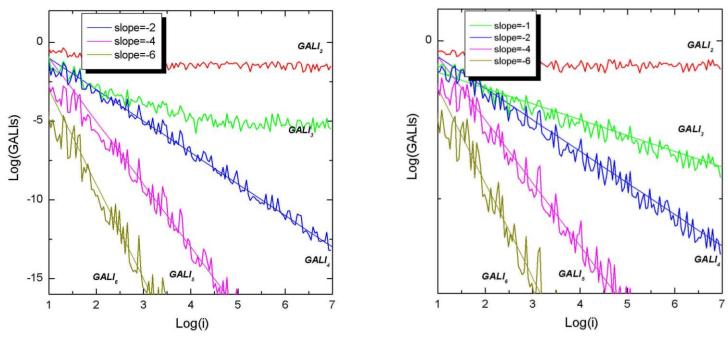
A regular orbit lying on a 4-dimensional torus for the N=8 FPU system.



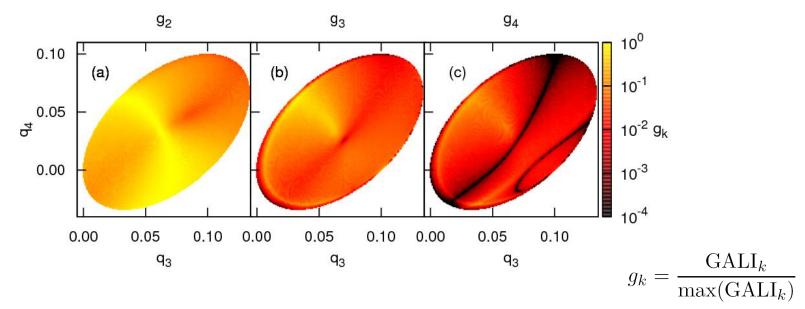
Low-dimensional tori - 6D map

$$\begin{aligned} \mathbf{x}_{1}^{\prime} &= \mathbf{x}_{1} + \mathbf{x}_{2}^{\prime} \\ \mathbf{x}_{2}^{\prime} &= \mathbf{x}_{2} + \frac{\mathbf{x}_{1}}{2\pi} \sin(2\pi\mathbf{x}_{1}) - \frac{\mathbf{B}}{2\pi} \left\{ \sin[2\pi(\mathbf{x}_{5} - \mathbf{x}_{1})] + \sin[2\pi(\mathbf{x}_{3} - \mathbf{x}_{1})] \right\} \\ \mathbf{x}_{3}^{\prime} &= \mathbf{x}_{3} + \mathbf{x}_{4}^{\prime} \\ \mathbf{x}_{4}^{\prime} &= \mathbf{x}_{4} + \frac{\mathbf{x}_{2}}{2\pi} \sin(2\pi\mathbf{x}_{3}) - \frac{\mathbf{B}}{2\pi} \left\{ \sin[2\pi(\mathbf{x}_{1} - \mathbf{x}_{3})] + \sin[2\pi(\mathbf{x}_{5} - \mathbf{x}_{3})] \right\} (\text{mod } 1) \\ \mathbf{x}_{5}^{\prime} &= \mathbf{x}_{5} + \mathbf{x}_{6}^{\prime} \\ \mathbf{x}_{6}^{\prime} &= \mathbf{x}_{6} + \frac{\mathbf{K}_{3}}{2\pi} \sin(2\pi\mathbf{x}_{5}) - \frac{\mathbf{B}}{2\pi} \left\{ \sin[2\pi(\mathbf{x}_{3} - \mathbf{x}_{5})] + \sin[2\pi(\mathbf{x}_{1} - \mathbf{x}_{5})] \right\} \end{aligned}$$

3D torus



Orbits with q₁=q₂=0.1, p₁=p₂=p₃=0, H=0.010075 for the N=4 **FPU system (Gerlach, Eggl, Ch.S., 2012, Int. J. Bifur. Chaos).**

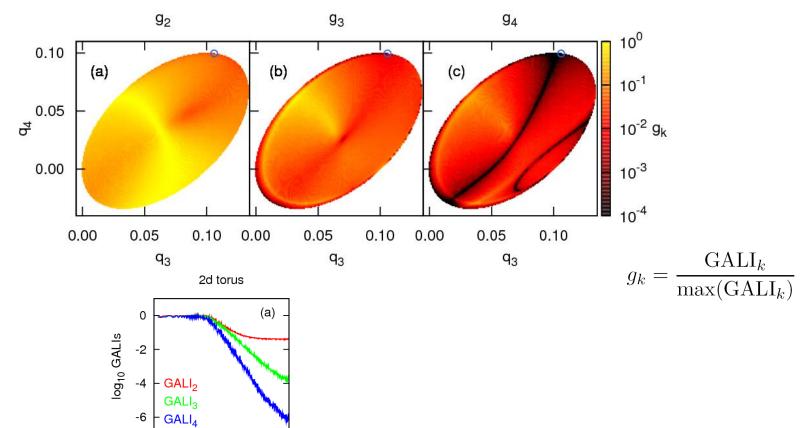


Orbits with q₁=q₂=0.1, p₁=p₂=p₃=0, H=0.010075 for the N=4 **FPU system (Gerlach, Eggl, Ch.S., 2012, Int. J. Bifur. Chaos).**

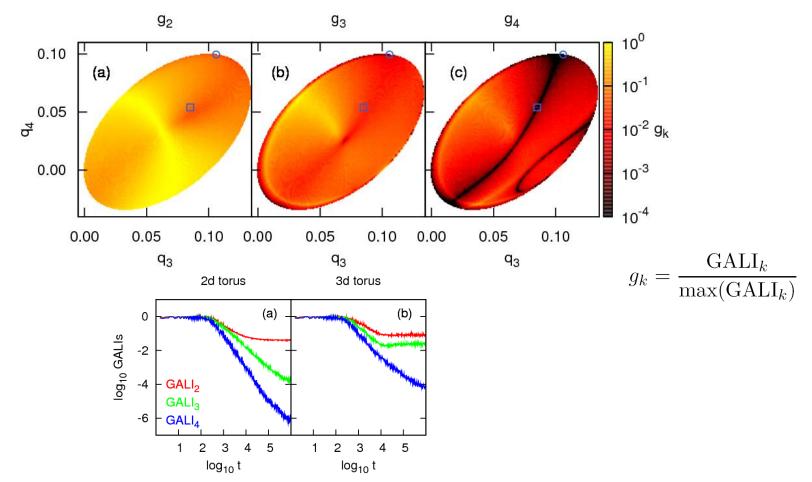
2 3 4 5

log₁₀ t

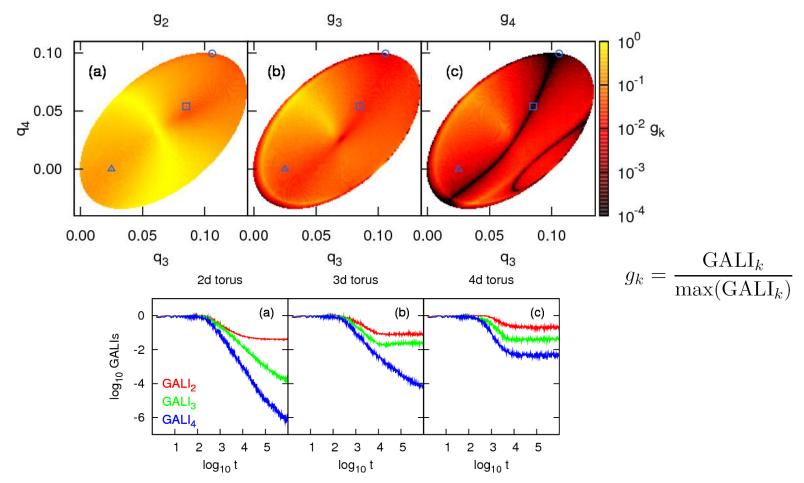
1



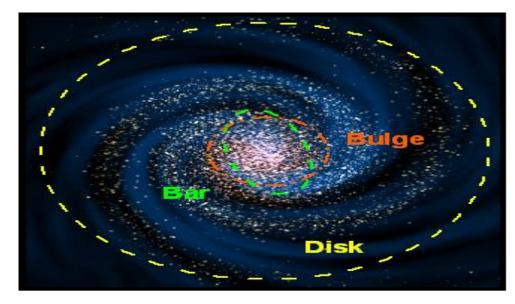
Orbits with q₁=q₂=0.1, p₁=p₂=p₃=0, H=0.010075 for the N=4 **FPU system (Gerlach, Eggl, Ch.S., 2012, Int. J. Bifur. Chaos).**



Orbits with q₁=q₂=0.1, p₁=p₂=p₃=0, H=0.010075 for the N=4 **FPU system (Gerlach, Eggl, Ch.S., 2012, Int. J. Bifur. Chaos).**



Barred galaxiesNGC 1433NGC 2217



Barred galaxy model

The 3D bar rotates around its short *z*-axis (*x*: long axis and *y*: intermediate). The Hamiltonian that describes the motion for this model is:

$$H = \frac{1}{2}(p_x^2 + p_y^2 + p_z^2) + V(x, y, z) - \Omega_b(xp_y - yp_x) \equiv Energy$$

This model consists of the superposition of potentials describing an axisymmetric part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A).

a) Axisymmetric component:

i) Plummer sphere:

$$V_{sphere}(x, y, z) = -\frac{GM_s}{\sqrt{x^2 + y^2 + z^2 + \varepsilon_s^2}}$$
ii) Miyamoto-Nagai disc:

$$V_{disc}(x, y, z) = -\frac{GM_D}{\sqrt{x^2 + y^2 + (A + \sqrt{B^2 + z^2})^2}}$$
b) Bar component: $V_{bar}(x, y, z) = -\pi Gabc \frac{\rho_c}{n+1} \int_{\lambda}^{\infty} \frac{du}{\Delta(u)} (1 - m^2(u))^{n+1},$
(Ferrers bar)

$$\rho_c = \frac{105}{32\pi} \frac{GM_B}{abc}$$
where $m^2(u) = \frac{x^2}{a^2 + u} + \frac{y^2}{b^2 + u} + \frac{z^2}{c^2 + u}, \ \Delta^2(u) = (a^2 + u)(b^2 + u)(c^2 + u),$
 $n:$ positive integer $(n = 2 \text{ for our model}), \ \lambda:$ the unique positive solution of $m^2(\lambda) = 1$
Its density is:

$$\rho = \begin{cases} \rho_c (1 - m^2)^n, \text{ for } m \le 1, \\ 0, \text{ for } m > 1 \end{cases}$$
, where $m^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}, \ a > b > c \text{ and } n = 2.$

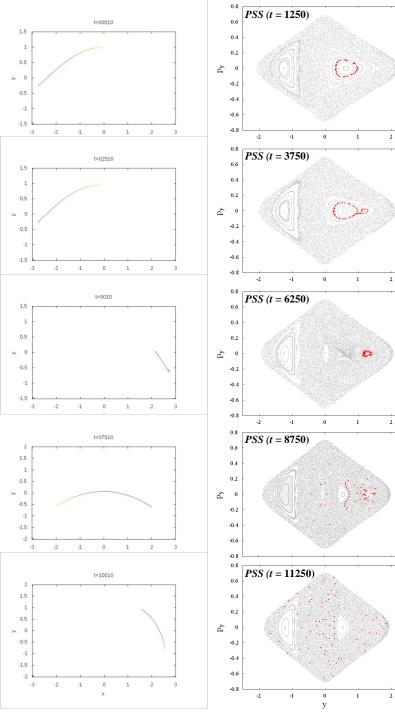
Time-dependent barred galaxy model

The 3D bar rotates around its short *z*-axis (*x*: long axis and *y*: intermediate). The Hamiltonian that describes the motion for this model is:

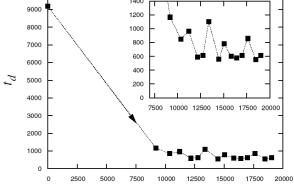
$$H = \frac{1}{2}(p_x^2 + p_y^2 + p_z^2) + V(x, y, z, t) - \Omega_b(xp_y - yp_x) \equiv Energy$$

This model consists of the superposition of potentials describing an axisymmetric part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A).

 $M_{s} + M_{B}(t) + M_{D}(t) = 1$, with $M_{B}(t) = M_{B}(0) + \alpha t$ a) Axisymmetric component: ii) Miyamoto–Nagai disc: i) Plummer sphere: $V_{disc}(x, y, z) = -\frac{GM_{D}(t)}{\sqrt{x^{2} + y^{2} + (A + \sqrt{B^{2} + z^{2}})^{2}}}$ $V_{sphere}(x, y, z) = -\frac{GM_{s}}{\sqrt{x^{2} + v^{2} + z^{2} + \varepsilon^{2}}}$ **b)** Bar component: $V_{bar}(x, y, z) = -\pi Gabc \frac{\rho_c}{n+1} \int_{\lambda}^{\infty} \frac{du}{\Lambda(u)} (1-m^2(u))^{n+1}$, (Ferrers bar) $\rho_{c} = \frac{105}{32\pi} \frac{GM_{B}(t)}{abc}$ where $m^{2}(u) = \frac{x^{2}}{a^{2}+u} + \frac{y^{2}}{b^{2}+u} + \frac{z^{2}}{c^{2}+u}$, $\Delta^{2}(u) = (a^{2}+u)(b^{2}+u)(c^{2}+u)$, n: positive integer (n = 2 for our model), λ : the unique positive solution of $m^{2}(\lambda) = 1$ (Ferrers bar) $\rho = \begin{cases} \rho_c (1 - m^2)^n, & \text{for } m \le 1\\ 0, & \text{for } m > 1 \end{cases}, \text{ where } m^2 = \frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2}, a > b > c \text{ and } n = 2. \end{cases}$ Its density is:

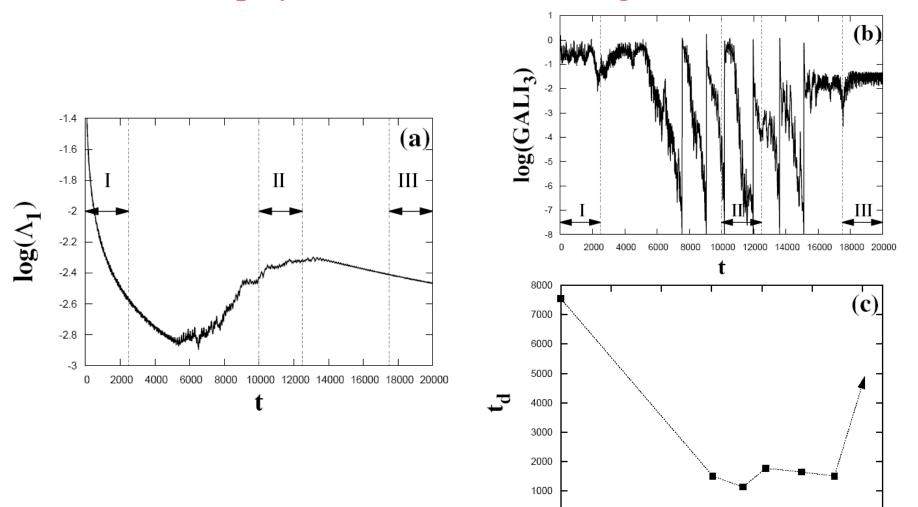


Time-dependent 2D barred galaxy model -1.6 Π III IV V -1.8 $\text{Log}_{10}(\sigma_1)$ -2 -2.2 -2.4 -2.6 -2.8 -3 -3.2 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 III IV 1 Π V 0 Log₁₀(GALI₂) -3 -6 -7 -8 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000 10000 1400 9000 1200



Time-dependent 3D barred galaxy model

Interplay between chaotic and regular motion



Numerical Integration of Equations of Motion and Variational Equations

Efficient integration of variational equations

Consider an N degree of freedom autonomous Hamiltonian system having a Hamiltonian function of the form:

$$H(\vec{q}, \vec{p}) = \frac{1}{2} \sum_{i=1}^{N} p_i^2 + V(\vec{q})$$

with $\vec{q} = (q_1(t), q_2(t), \dots, q_N(t)) \ \vec{p} = (p_1(t), p_2(t), \dots, p_N(t))$ being respectively the coordinates and momenta.

The time evolution of an orbit is governed by the Hamilton's equations of motion

$$\vec{q} = \vec{p} \\ \dot{\vec{p}} = -\frac{\partial V}{\partial \vec{q}}$$

Variational Equations

The time evolution of a deviation vector

 $\vec{w}(t) = (\delta q_1(t), \delta q_2(t), \dots, \delta q_N(t), \delta p_1(t), \delta p_2(t), \dots, \delta p_N(t))$ from a given orbit is governed by the variational equations:

$$\vec{\delta q} = \vec{\delta p}$$

$$\dot{\vec{\delta p}} = -\mathbf{D}^2 \mathbf{V}(\vec{q}(t))\vec{\delta q}$$

where $\mathbf{D}^2 \mathbf{V}(\vec{q}(t))_{jk} = \frac{\partial^2 V(\vec{q})}{\partial q_j \partial q_k}\Big|_{\vec{q}(t)}$, $j, k = 1, 2, \dots, N$.

The variational equations are the equations of motion of the time dependent tangent dynamics Hamiltonian (TDH) function

$$H_V(\vec{\delta q}, \vec{\delta p}; t) = \frac{1}{2} \sum_{j=1}^N \delta p_i^2 + \frac{1}{2} \sum_{j,k}^N \mathbf{D}^2 \mathbf{V}(\vec{q}(t))_{jk} \delta q_j \delta q_k$$

Autonomous Hamiltonian systems

As an example, we consider the Hénon-Heiles system:

$$H_2 = \frac{1}{2}(p_x^2 + p_y^2) + \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3$$

Hamilton's equations of motion: -

$$\begin{cases} \dot{x} = p_x \\ \dot{y} = p_y \\ \dot{p}_x = -x - 2xy \\ \dot{p}_y = y^2 - x^2 - y \end{cases}$$

Variational equations:

$$\begin{cases} \dot{\delta x} &= \delta p_x \\ \dot{\delta y} &= \delta p_y \\ \dot{\delta p}_x &= -(1+2y)\delta x - 2x\delta y \\ \dot{\delta p}_y &= -2x\delta x + (-1+2y)\delta y \end{cases}$$

Integration of the variational equations

We use two general-purpose numerical integration algorithms for the integration of the whole set of equations:

$$\begin{cases} \dot{x} = p_x \\ \dot{y} = p_y \\ \dot{p}_x = -x - 2xy \\ \dot{p}_y = y^2 - x^2 - y \\ \dot{\delta x} = \delta p_x \\ \dot{\delta y} = \delta p_y \\ \dot{\delta p}_x = -(1 + 2y)\delta x - 2x\delta y \\ \dot{\delta p}_y = -2x\delta x + (-1 + 2y)\delta y \end{cases}$$

a) the **DOP853** integrator (Hairer et al. 1993, http://www.unige.ch/~hairer/software.html), which is an explicit non-symplectic Runge-Kutta integration scheme of order 8,

b) the **TIDES** integrator (Barrio 2005, http://gme.unizar.es/software/tides), which is based on a Taylor series approximation

$$\boldsymbol{y}(t_i + \tau) \simeq \boldsymbol{y}(t_i) + \tau \frac{\mathrm{d}\boldsymbol{y}(t_i)}{\mathrm{d}t} + \frac{\tau^2}{2!} \frac{\mathrm{d}^2 \boldsymbol{y}(t_i)}{\mathrm{d}t^2} + \ldots + \frac{\tau^n}{n!} \frac{\mathrm{d}^n \boldsymbol{y}(t_i)}{\mathrm{d}t^n}$$

for the solution of system

$$\frac{\mathrm{d}\boldsymbol{y}(t)}{\mathrm{d}t} = \boldsymbol{f}(\boldsymbol{y}(t))$$

Symplectic Integration schemes

Formally the solution of the Hamilton's equations of motion can be written as: $\frac{d\vec{X}}{dt} = \{H, \vec{X}\} = L_H \vec{X} \Rightarrow \vec{X}(t) = \sum_{h=1}^{n} \frac{t^h}{t^h} L_H^h \vec{X} = e^{tL_H} \vec{X}$

$$\frac{dt}{dt} = \left\{ H, X \right\} = L_H X \Longrightarrow X(t) = \sum_{n \ge 0} \frac{dt}{n!} L_H X = e^{-n} X$$

where \overline{X} is the full coordinate vector and L_H the Poisson operator:

$$L_{H}f = \sum_{j=1}^{N} \left\{ \frac{\partial H}{\partial p_{j}} \frac{\partial f}{\partial q_{j}} - \frac{\partial H}{\partial q_{j}} \frac{\partial f}{\partial p_{j}} \right\}$$

If the Hamiltonian H can be split into two integrable parts as H=A+B, a symplectic scheme for integrating the equations of motion from time t to time t+ τ consists of approximating the operator $e^{\tau L_H}$ by

$$\mathbf{e}^{\tau \mathbf{L}_{\mathrm{H}}} = \mathbf{e}^{\tau (\mathbf{L}_{\mathrm{A}} + \mathbf{L}_{\mathrm{B}})} \approx \prod_{i=1}^{\mathrm{j}} \mathbf{e}^{\mathbf{c}_{i} \tau \mathbf{L}_{\mathrm{A}}} \mathbf{e}^{\mathbf{d}_{i} \tau \mathbf{L}_{\mathrm{B}}}$$

for appropriate values of constants c_i, d_i.

So the dynamics over an integration time step τ is described by a series of successive acts of Hamiltonians A and B.

Symplectic Integrator SABA₂C

We use a symplectic integration scheme developed for Hamiltonians of the form $H=A+\varepsilon B$ where A, B are both integrable and ε a parameter. The operator $e^{\tau L_{H}}$ can be approximated by the symplectic integrator (Laskar & Robutel, 2001, Cel. Mech. Dyn. Astr.):

 $SABA_{2} = e^{c_{1}\tau L_{A}} e^{d_{1}\tau L_{\epsilon B}} e^{c_{2}\tau L_{A}} e^{d_{1}\tau L_{\epsilon B}} e^{c_{1}\tau L_{\epsilon B}} e^{c_{1}\tau L_{A}}$ with $c_{1} = \frac{(3-\sqrt{3})}{6}, c_{2} = \frac{\sqrt{3}}{3}, d_{1} = \frac{1}{2}.$

The integrator has only positive steps and its error is of order $O(\tau^4 \epsilon + \tau^2 \epsilon^2)$.

In the case where *A* is quadratic in the momenta and *B* depends only on the positions the method can be improved by introducing a corrector $C=\{\{A,B\},B\}$, having a small negative step: $-\tau^{3}\epsilon^{2}\frac{c}{2}L_{\{\{A,B\},B\}}$ with $c = \frac{(2-\sqrt{3})}{24}$. Thus the full integrator scheme becomes: $SABAC_{2} = C$ ($SABA_{2}$) *C* and its error is of order O($\tau^{4}\epsilon + \tau^{4}\epsilon^{2}$).

Tangent Map (TM) Method

Use symplectic integration schemes for the whole set of equations (Ch.S., Gerlach, 2010, PRE)

We apply the SABAC₂ integrator scheme to the Hénon-Heiles system (with $\epsilon=1$) by using the splitting:

$$A = \frac{1}{2}(p_x^2 + p_y^2), \qquad B = \frac{1}{2}(x^2 + y^2) + x^2y - \frac{1}{3}y^3,$$

with a corrector term which corresponds to the Hamiltonian function:

$$C = \{\{A, B\}, B\} = (x + 2xy)^{2} + (x^{2} - y^{2} + y)^{2}$$

We approximate the dynamics by the act of Hamiltonians A, B and C, which correspond to the symplectic maps:

$$e^{\tau L_A} : \begin{cases} x' = x + p_x \tau \\ y' = y + p_y \tau \\ p'_x = p_x \\ p'_y = p_y \end{cases}, e^{\tau L_C} : \begin{cases} x' = x \\ y' = y \\ p'_x = p_x - 2x(1 + 2x^2 + 6y + 2y^2) \tau \\ p'_x = p_x - 2x(1 + 2x^2 + 6y + 2y^2) \tau \\ p'_y = p_y - 2(y - 3y^2 + 2y^3 + 3x^2 + 2x^2y) \tau \\ p'_y = p_y - 2(y - 3y^2 + 2y^3 + 3x^2 + 2x^2y) \tau \end{cases}$$

Tangent Map (TM) Method

Let
$$\vec{u} = (x, y, p_x, p_y, \delta x, \delta y, \delta p_x, \delta p_y)$$

The system of the Hamilton's equations of motion and the variational equations is split into two integrable systems which correspond to Hamiltonians A and B.

$$\begin{array}{c} x &= p_{x} \\ \dot{y} &= p_{y} \\ \dot{y} &= p_{y} \\ \dot{p}_{x} &= -x - 2xy \\ \dot{p}_{y} &= y^{2} - x^{2} - y \end{array} \xrightarrow{A\left(\vec{p}\right)} \xrightarrow{\dot{x} &= p_{x} \\ \dot{y} &= p_{y} \\ \dot{p}_{x} &= 0 \\ \dot{p}_{y} &= 0 \\ \dot{\delta}x &= \delta p_{x} \\ \dot{\delta}y &= \delta p_{y} \\ \dot{\delta}y &= \delta p_{y} \\ \dot{\delta}y &= \delta p_{y} \\ \dot{\delta}y &= x + p_{x} \\ \dot{p}_{x} &= p_{x} \\ \dot{p}_{y} &= p_{y} \\ \dot{\delta}x' &= \delta p_{x} \\ \dot{\delta}y' &= \delta p_{x} \\ \dot{\delta}y' &= \delta p_{x} \\ \dot{\delta}y &= 0 \\ \dot{\delta}p_{y} &= 0 \end{array} \right\} \Rightarrow \frac{d\vec{u}}{dt} = L_{AV}\vec{u} \Rightarrow e^{\tau L_{AV}} : \begin{cases} x' &= x + p_{x} \\ y' &= y + p_{y} \\ px' &= p_{x} \\ py' &= p_{y} \\ \dot{\delta}x' &= \delta x \\ \dot{\delta}y' &= \delta p_{x} \\ \dot{\delta}y' &= \delta p_{x} \\ \dot{\delta}p'_{x} &= \delta p_{x} \\ \dot{\delta}p'_{x} &= \delta p_{x} \\ \dot{\delta}p'_{y} &= \delta p_{y} \\ \dot{\delta}p_{x} &= 0 \\ \dot{\delta}p_{y} &= 0 \end{cases}$$

Tangent Map (TM) Method

So any symplectic integration scheme used for solving the Hamilton's equations of motion, which involves the action of Hamiltonians A, B and C, can be extended in order to integrate simultaneously the variational equations. $(x' = x + p_r \tau)$

$$e^{\tau L_{A}} : \begin{cases} x' = x + p_{x}\tau \\ y' = y + p_{y}\tau \\ p'_{x} = p_{x} \\ p'_{y} = p_{y} \end{cases} e^{\tau L_{AV}} : \begin{cases} x' = x \\ y' = y \\ \delta x' = \delta x + \delta p_{x}\tau \\ \delta y' = \delta p_{x} \\ \delta y' = \delta p_{x} \\ \delta y' = \delta p_{x} \end{cases} e^{\tau L_{BV}} : \begin{cases} x' = x \\ y' = y \\ p'_{y} = p_{y} + (y^{2} - x^{2} - y)\tau \\ \delta x' = \delta x \\ \delta y' = \delta y \\ \delta y' = \delta y \\ \delta y' = \delta p_{x} - [(1 + 2y)\delta x + 2x\delta y]\tau \\ \delta y' = \delta p_{x} - [(1 + 2y)\delta x + (-1 + 2y)\delta y]\tau \\ \delta y' = \delta p_{x} - [(1 + 2y)\delta x + (-1 + 2y)\delta y]\tau \\ \delta y' = \delta p_{y} + [-2x\delta x + (-1 + 2y)\delta y]\tau \\ \delta y' = \delta p_{y} - 2(y - 3y^{2} + 2y^{2})\tau \end{cases} e^{\tau L_{CV}} : \begin{cases} x' = x \\ y' = y \\ p'_{x} = p_{x} - 2x(1 + 2x^{2} + 6y + 2y^{2})\tau \\ p'_{y} = p_{y} - 2(y - 3y^{2} + 2y^{3} + 3x^{2} + 2x^{2}y)\tau \end{cases} e^{\tau L_{CV}} : \begin{cases} x' = x \\ y' = y \\ p'_{x} = b_{x} - 2[(1 + 6x^{2} + 2y^{2})\tau \\ \delta y' = \delta y \\ \delta y' = \delta$$

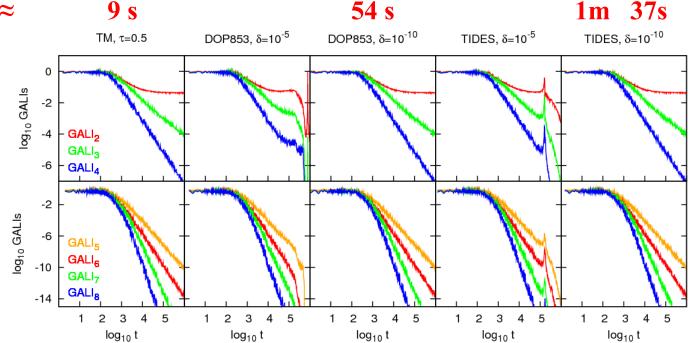
Application: FPU system

N particles Fermi-Pasta-Ulam (FPU) system:

$$\mathbf{H} = \frac{1}{2} \sum_{i=1}^{N} \mathbf{p}_{i}^{2} + \sum_{i=0}^{N} \left[\frac{1}{2} (\mathbf{q}_{i+1} - \mathbf{q}_{i})^{2} + \frac{\beta}{4} (\mathbf{q}_{i+1} - \mathbf{q}_{i})^{4} \right]$$

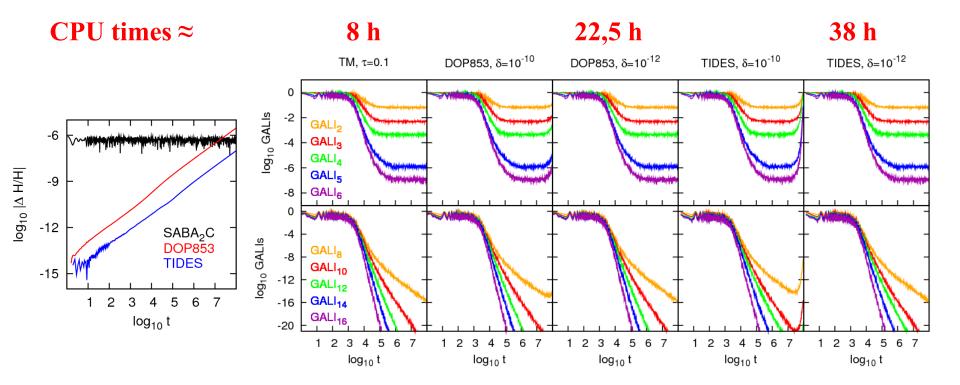
with fixed boundary conditions, β =1.5 and N=4 - 20.

N=4. Regular motion on 2d torus. Final time t=10⁶. CPU times \approx 9 s 54 s



Application: FPU system

N=12. Regular motion on 6d torus. Final time t=10⁸.



Conclusions I

- The Smaller ALignment Index (SALI) method a fast, efficient and easy to compute chaos indicator.
- Behaviour of the SALI :
 - ✓ 2D maps: it tends to zero following completely different time rates for regular and chaotic orbits, which allows the distinction between the two cases.
 - ✓ Hamiltonian flows and in multidimensional maps: it goes to zero for chaotic orbits, while it tends to a positive value for ordered orbits.

Conclusions II

- Generalizing the SALI method we define the Generalized ALignment Index of order k $(GALI_k)$ as the volume of the parallelepiped, whose edges are k unit deviation vectors. $GALI_k$ is computed as the product of the singular values of a matrix (SVD algorithm).
- Behaviour of GALI_k :
 - ✓ Chaotic motion: it tends exponentially to zero with exponents that involve the values of several Lyapunov exponents.
 - ✓ Regular motion: it fluctuates around non-zero values for 2≤k≤s and goes to zero for s<k≤2N following power-laws, with s being the dimensionality of the torus.

Conclusions III

- GALI_k indices :
 - \checkmark can distinguish rapidly and with certainty between regular and chaotic motion
 - ✓ can be used to characterize individual orbits as well as "chart" chaotic and regular domains in phase space
 - ✓ are perfectly suited for studying the global dynamics of multidimentonal systems, as well as of time-dependent models
 - ✓ can identify regular motion on low–dimensional tori
- SALI/GALI methods have been successfully applied to a variety of conservative dynamical systems of
 - ✓ Celestial Mechanics (e.g. Széll et al., 2004, MNRAS Soulis et al., 2008, Cel. Mech. Dyn. Astr. - Voyatzis, 2008, Astron. J. - Libert et al., 2011, MNRAS - Racoveanu, 2014, Astron. Nachr.)
 - ✓ Galactic Dynamics (e.g. Capuzzo-Dolcetta et al., 2007, Astroph. J. Carpintero, 2008, MNRAS Manos & Athanassoula, 2011, MNRAS Carpintero et al., 2014, MNRAS)
 - ✓ Nuclear Physics (e.g. Macek et al., 2007, Phys. Rev. C Stránský et al., 2007, Phys. Atom. Nucl. Stránský et al., 2009, Phys. Rev. E Antonopoulos et al., 2010, PRE)
 - ✓ Statistical Physics (e.g. Paleari & Penati, 2008, Lect. Notes Phys. Manos & Ruffo, 2011, Trans. Theory Stat. Phys. - Christodoulidi & Efthymiopoulos, 2013, Physica D)

Conclusions IV

- Tangent map (TM) method: Symplectic integrators can be used for the efficient integration of the Hamilton's equations of motion and the variational equations.
 - ✓ They reproduce accurately the properties of chaos indicators like the GALIs.
 - ✓ These algorithms have better performance than nonsymplectic schemes in CPU time requirements. This characteristic is of great importance especially for multidimensional systems.

Main References I

- Hamiltonian systems and symplectic maps
 - Lieberman A. J. & Lichtenberg M. A. (1992) Regular and Chaotic Dynamics, Springer
 - Cvitanović P., Artuso R., Dahlqvist P., Mainieri R., Tanner G., Vattay G., Whelan N. & Wirzba A., (2015) Chaos – Classical and Quantum, version 15, http://chaosbook.org/
- Lyapunov exponents
 - ✓ Oseledec V I (1968) Trans. Moscow Math. Soc. 19 197
 - ✓ Benettin G, Galgani L, Giorgilli A and Strelcyn J-M (1980) Meccanica March 9
 - ✓ Benettin G, Galgani L, Giorgilli A and Strelcyn J-M 1980 Meccanica March 21
 - ✓ Ch.S. (2010) Lect. Notes Phys., 790, 63-135

Main References II

• SALI

- ✓ Ch.S. (2001) J. Phys. A, 34, 10029
- Ch.S., Antonopoulos Ch., Bountis T. C. & Vrahatis M. N. (2003) Prog. Theor. Phys. Supp., 150, 439
- Ch.S., Antonopoulos Ch., Bountis T. C. & Vrahatis M. N. (2004) J. Phys. A, 37, 6269
- ✓ Bountis T. & Ch.S. (2006) Nucl. Inst Meth. Phys Res. A, 561, 173
- ✓ Boreaux J., Carletti T., Ch.S. &Vittot M. (2012) Com. Nonlin. Sci. Num. Sim., 17, 1725
- ✓ Boreaux J., Carletti T., Ch.S., Papaphilippou Y. & Vittot M. (2012) Int. J. Bif. Chaos, 22, 1250219
- GALI
 - ✓ Ch.S., Bountis T. C. & Antonopoulos Ch. (2007) Physica D, 231, 30-54
 - ✓ Ch.S., Bountis T. C. & Antonopoulos Ch. (2008) Eur. Phys. J. Sp. Top., 165, 5-14
 - ✓ Gerlach É., Eggl S. & Ch.S. (2012) Int. J. Bif. Chaos, 22, 1250216
 - ✓ Manos T., Ch.S. & Antonopoulos Ch. (2012) Int. J. Bif. Chaos, 22, 1250218
 - ✓ Manos T., Bountis T. & Ch.S. (2013) J. Phys. A, 46, 254017

Main References III

- Reviews on SALI and GALI
 - ✓ Bountis T.C. & Ch.S. (2012) 'Complex Hamiltonian Dynamics', Chapter 5, Springer Series in Synergetics
 - ✓ Ch.S. & Manos T. (2014), submitted (preprint version: nlin.CD/1412.7401)
- TM method
 - ✓ Ch.S. & Gerlach E. (2010) Phys. Rev. E, 82, 036704
 - ✓ Gerlach E. & Ch.S. (2011) Discr. Cont. Dyn. Sys.-Supp., 8th AIMS Int. Conference, 475
 - ✓ Gerlach E., Eggl S. & Ch.S. (2012) Int. J. Bif. Chaos, 22, 1250216