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Autonomous Hamiltonian systems 

Consider an N degree of freedom autonomous 

Hamiltonian system having a Hamiltonian function of the 

form: 
 

H(q1,q2,…,qN, p1,p2,…,pN) 

The time evolution of an orbit (trajectory) with initial 

condition 

P(0)=(q1(0), q2(0),…,qN(0), p1(0), p2(0),…,pN(0)) 

positions momenta 

is governed by the Hamilton’s equations of motion 

 

 

i i

i i

dp dqH H
= -    ,    =

dt q dt p



Variational Equations 

We use the notation x = (q1,q2,…,qN,p1,p2,…,pN)T. The 

deviation vector from a given orbit is denoted by 

v = (δx1, δx2,…,δxn)T , with n=2N 

The time evolution of v is given by 

the so-called variational equations: 

 
dv

= -J P  v
dt

  i, j =1,2, ,n
  
 

  

2
N N

i j

N N i j

0 -I H
J =   ,  P =

I 0 x x

where 

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93 



Example (Hénon-Heiles system) 

Hamilton’s equations of motion: 

   2 2 2 2 2 3

x y

1 1 1
H = p + p + x + y + x y - y

2 2 3

i i

i i

dp dqH H
= -   ,  =

dt q dt p

∂ ∂

∂ ∂





 




x

y

x

2 2

y

x = p

y = p

p = -x - 2xy

p = -y - x + y
In order to get the variational equations we linearize the above equations by 

substituting x, y, px, py with x+v1, y+v2, px+v3, py+v4 where v=(v1,v2,v3,v4) is 

the deviation vector. So we get:  





x 3 1 1 2

x 3 1 2 1 1 2

p + v = -x - v -2(x+ v )(y+ v )

p + v = -x - v -2xy -2xv -2yv -2v v

3 1 1 2
v = -v - 2yv - 2xv



Example (Hénon-Heiles system) 

Variational equations:  
dv

= -J P  v
dt

 
 
 
 
  
 

1

2

3

4

v

v

v

v

0 0 1 0

0 0 0 1

1 0 0 0

0 1 0 0

 
 

  
 
  
 

 
 
 
 
  
 

1+ 2y 2x 0 0

2x 1-2y 0 0

0 0 1 0

0 0 0 1

 
 
 
 
  
 

1

2

3

4

v

v

v

v

1 3

2 4

3 1 2 1

4 2 1 2

v = v

v = v

v = -v - 2xv - 2yv

v = -v - 2xv + 2yv

x

y

x

2 2

y

x = p

y = p

p = -x - 2xy

p = -y - x + y


Complete set of equations 



Poincaré Surface of Section (PSS) 

In general we can assume a PSS of the form qN+1=constant. Then only 

variables q1,q2,…,qN,p1,p2,…,pN are needed to describe the evolution 

of an orbit on the PSS, since pN+1 can be found from the Hamiltonian.  

We can constrain the 

study of an N+1 

degree of freedom 

Hamiltonian system 

to a 2N-dimensional 

subspace of the 

general phase space.  

In this sense an N+1 degree of freedom Hamiltonian 

system corresponds to a 2N-dimensional symplectic map. 

Lieberman & Lichtenberg, 1992, Regular and Chaotic Dynamics, Springer. 



Hénon-Heiles system: PSS 

Chaotic motion 

Chaotic sea 

Regular motion 

Island of stability 



Symplectic Maps 
Consider an 2N-dimensional symplectic map T. In this 

case we have discrete time. 

This is an area-preserving map whose Jacobian matrix 

satisfies 

 T

2N 2NM J M = J

   
   
 
   

    
 
 
 
   
    

1 1 1

1 2 2N

2 2 2

1 2 2N

2N 2N 2N

1 2 2N

T T T

x x x

T T T
T

x x xM = =
x

T T T

x x x



Symplectic Maps 

The evolution of an orbit with initial condition 

P(0)=(x1(0), x2(0),…,x2N(0))  

is governed by the equations of map T 

P(i+1)=T P(i)  ,  i=0,1,2,…  

The evolution of an initial deviation vector  

v(0) = (δx1(0), δx2(0),…, δx2N(0)) 

is given by the corresponding tangent map 




 i

T
v(i + 1) = v(i)  , i = 0,1, 2,

P



Example – 2D map 

    
       

1 1 1 1 2

2 2 2 2 1 2

x x x = x + x
= T   (mod 2π)

x x x = x  - ν sin(x  + x )

Equations of the map: 




 i

T
v(i + 1) = v(i)

P

Tangent map: 

 
  

1

2

dx

dx

 
 
 1 2 1 2

1 1
=

-νcos(x + x ) 1- νcos(x + x )

 
 
 

1

2

dx

dx



Lyapunov Exponents 

Roughly speaking, the Lyapunov exponents of a given 

orbit characterize the mean exponential rate of divergence 

of trajectories surrounding it.  

Consider an orbit in the 2N-dimensional phase space with 

initial condition x(0) and an initial deviation vector from it 

v(0). Then the mean exponential rate of divergence is:  

t

v(t)1
σ(x(0), v(0)) = lim ln

t v(0)



Lyapunov Exponents 

There exists an M-

dimensional basis {êi} of v 

such that for any v, σ takes  

one of the M (possibly 

nondistinct) values 

σi(x(0)) = σ(x(0), êi) 

which are the Lyapunov 

exponents.  

In autonomous Hamiltonian systems the M exponents are ordered in 

pairs of opposite sign numbers and two of them are 0. 

Benettin & Galgani, 1979, in Laval and Gressillon (eds.), op cit, 93 



Computation of the Maximal 

Lyapunov Exponent 
Due to the exponential growth of v(t) (and of d(t)=||v(t)||) 

we renormalize v(t) from time to time. 

Then the Maximal Lyapunov exponent is computed as 

n 


n

1 i

i=1

1
σ = lim ln d

n



Maximum Lyapunov Exponent 

If we start with more than one linearly independent 

deviation vectors they will align to the direction defined by 

the largest Lyapunov exponent for chaotic orbits.  

σ1=0  Regular motion 

σ10  Chaotic motion 



The  

Smaller ALignment Index  

(SALI)  

method 



Definition of Smaller 

Alignment Index (SALI) 
Consider the 2N-dimensional phase space of a conservative dynamical 

system (symplectic map or Hamiltonian flow).  

An orbit in that space with initial condition : 

 P(0)=(x1(0), x2(0),…,x2N(0)) 

and a deviation vector  

 v(0)=(δx1(0), δx2(0),…, δx2N(0)) 

The evolution in time (in maps the time is discrete and is equal to the 
number n of the iterations) of a deviation vector is defined by: 

•the variational equations (for Hamiltonian flows) and 

•the equations of the tangent map (for mappings)  



Definition of SALI 
We follow the evolution in time of two different initial 

deviation vectors (v1(0), v2(0)), and define SALI (Ch.S. 

2001, J. Phys. A) as: 

When the two vectors become collinear 

SALI(t) → 0  

 ˆ ˆ ˆ ˆ
1 2 1 2

SALI(t) = min v (t) + v (t) , v (t) - v (t)

ˆ 1

1

1

v (t)
v (t) =

v (t)

where 



2
v (t)

1
v (t)

Behavior of SALI for chaotic motion 

For chaotic orbits the two initially 

different deviation vectors tend to 

coincide with the direction defined 

by the maximum Lyapunov 

exponent. 

ˆ
1

v (0)

ˆ
2

v (0)

ˆ
2

v (t)

ˆ
1

v (t)

P(0) 

P(t) 

SALI(0) 

SALI(t) 



Behavior of SALI for chaotic motion 
The evolution of a deviation vector can be approximated by:  

ˆ ˆ ˆ i 1 2

n
σ t σ t σ t(1) (1) (1)

1 i i 1 1 2 2

i=1

v (t) = c e u  c e u + c e u

In this approximation, we derive a leading order estimate of the ratio  

ˆ ˆ
ˆ ˆ  

1 2

1 2

1

σ t σ t(1) (1) (1)
-(σ -σ )t1 1 1 2 2 2

1 2σ t(1) (1)

1 1 1

v (t) c e u + c e u c
= u e u

v (t) c e c

and an analogous expression for v2  

ˆ ˆ
ˆ ˆ  

1 2

1 2

1

σ t σ t(2) (2) (2)
-(σ -σ )t2 1 1 2 2 2

1 2σ t(2) (2)

2 1 1

v (t) c e u + c e u c
= u e u

v (t) c e c
So we get: 

  
  

  

1 2

(1) (2)

-(σ -σ )t1 2 1 2 2 2

(1) (2)
1 2 1 2 1 1

v (t) v (t) v (t) v (t) c c
SALI(t) = min + , - e

v (t) v (t) v (t) v (t) c c

where σ1>σ2…  σn  are the Lyapunov exponents  and       j=1, 2, …, 
2N the corresponding eigendirections.  

ˆ
ju



Behavior of SALI for chaotic motion 


3

2 2 2 2i
i i 1 2 1 3

i=1

ω
H = (q + p ) + q q + q q

2

We test the validity of the approximation SALIe-(σ1-σ2)t (Ch.S., 
Antonopoulos, Bountis, Vrahatis, 2004, J. Phys. A) for a chaotic orbit 
of the 3D Hamiltonian 

with ω1=1, ω2=1.4142, ω3=1.7321, Η=0.09 

σ10.037 

σ20.011 

slope=-(σ1-σ2)/ln(10) 



P(t) 

P(0) 

Behavior of SALI for regular motion 

Regular motion occurs on a torus and two different initial 

deviation vectors become tangent to the torus, generally  

having different directions.  

ˆ
2

v (0)
ˆ

1
v (0)

ˆ
1

v (0)

ˆ
2

v (0)



Applications – Hénon-Heiles system 

For E=1/8 we consider the orbits with initial conditions: 

Regular orbit, x=0, y=0.55, px=0.2417, py=0 

Chaotic orbit, x=0, y=-0.016, px=0.49974, py=0 

Chaotic orbit, x=0, y=-0.01344, px=0.49982, py=0  

As an example, we consider the 2D Hénon-Heiles system: 



Applications – Hénon-Heiles system 

-0.5 0.0 0.5
y

-16

-12

-8

-4

0

lo
g
(S

A
L
I)

-0.5 0.0 0.5
y

-16

-12

-8

-4

0

lo
g
(S

A
L
I)

t=1000 

t=4000 



Applications – Hénon-Heiles system 

y 

py 



The percentage of non chaotic orbits (SALI > 10-8 for t=1000) 

Hénon-Heiles (1964) Astron. J. 69, 73. 
A. Manos (2004) Master Thesis, Univ. of Patras 

Applications – Hénon-Heiles system 



Applications – 4D map 








1 1 2

2 2 1 2 1 2 3 4

3 3 4

4 4 3 4 1 2 3 4

x = x + x

x = x  - ν sin(x  + x ) - μ [1 - cos(x  + x  + x  + x )] 
(mod 2π)

x = x  + x

x = x  - κ sin(x  + x ) - μ [1 - cos(x  + x  + x  + x )] 

-3 -2 -1 0 1 2 3
X 

1

-3

-2

-1

0

1

2

3

X 
2 C D

For ν=0.5, κ=0.1, μ=0.1 we consider the orbits: 

regular orbit C with initial conditions x1=0.5, x2=0, x3=0.5, x4=0.  

chaotic orbit D with initial conditions x1=3, x2=0, x3=0.5, x4=0. 

2 3 4 5 6 7

logN 

-6

-5

-4

-3

-2

-1

lo
g
L
 N

(a)

2 3 4 5 6 7

logN 

-16

-12

-8

-4

0

lo
g
(S

A
L
I)

(d)



Applications – 4D Accelerator map 
We consider the 4D symplectic map 

     
    
    
    
              

11 1 1

2 2

2 1 32 1 1

33 2 2

4 1 34 2 2

xx cosω -sinω 0 0

x + x - xx sinω cosω 0 0
 =

xx 0 0 cosω -sinω

x - 2x xx 0 0 sinω cosω

describing the instantaneous sextupole ‘kicks’ experienced by a particle as it 

passes through an accelerator (Turchetti & Scandale 1991, Bountis & 

Tompaidis 1991, Vrahatis et al. 1996, 1997).  

x1 and x3 are the particle’s deflections from the ideal circular orbit, in the 

horizontal and vertical directions respectively. 

x2 and x4 are the associated momenta  

ω1, ω2 are related to the accelerator’s tunes qx, qy by ω1=2πqx,   ω2=2πqy 

Our goal is to estimate the region of stability of the particle’s motion, the so-

called dynamic aperture of the beam (Bountis, Ch.S., 2006, Nucl. Inst Meth. 

Phys Res. A) and to increase its size using chaos control techniques (Boreaux, 

Carletti, Ch.S., Vittot, 2012, Commun. Nonlinear Sci. Num. Simulat. – 

Boreaux, Carletti, Ch.S., Papaphilippou, Vittot, 2012, Int. J. Bifur. Chaos). 



4D Accelerator map – "Global" study  

Regions of different values of the SALI on the subspace 

x2(0)=x4(0)=0, after 105 iterations (qx=0.61803 qy=0.4152) 

4D map Controlled 4D map 

log(SALI) 



4D Accelerator map – "Global" study  
Increase of the dynamic aperture 

We evolve many orbits in 4D hyperspheres of radius r 

centered at x1=x2=x3=x4=0, for 105 iterations. 

4D map 

Controlled 4D map 

Regular orbits 

Chaotic orbits 



Applications – 2D map 





1 1 2

2 2 1 2

x = x + x
  (mod 2π)

x = x  - ν sin(x  + x )

-3 -2 -1 0 1 2 3
X 

1

-3

-2

-1

0

1

2

3

X 
2 A B

For ν=0.5 we consider the orbits: 

regular orbit A with initial conditions x1=2, x2=0. 

chaotic orbit B with initial conditions x1=3, x2=0. 



Behavior of SALI 

2D maps 

SALI→0 both for regular and chaotic orbits  

following, however, completely different time rates which 

allows us to distinguish between the two cases.  

Hamiltonian flows and multidimensional maps 

SALI→0 for chaotic orbits 

 

SALI→constant ≠ 0 for regular orbits  



Questions 

• Can rapidly reveal the nature of chaotic orbits with 

σ1σ2 (SALIe-(σ1-σ2)t)?  

 

• Depends on several Lyapunov exponents for chaotic 

orbits? 

 

• Exhibits power-law decay for regular orbits depending 

on the dimensionality of the tangent space of the 

reference orbit as for 2D maps? 

Can we generalize SALI so that the new index: 



The  

Generalized ALignment Indices  

(GALIs)  

method 



ˆ
1

v (0)

ˆ
2

v (0)

ˆ
2

v (t)

ˆ
1

v (t)

P(0) 

P(t) 

Definition of Generalized 

Alignment Index (GALI) 
SALI effectively measures the ‘area’ of the parallelogram 

formed by the two deviation vectors. 

 

ˆ ˆ ˆ ˆ
ˆ ˆ

ˆ ˆ ˆ ˆ 

 
  


 



1 2 1 2

1 2

1 2 1 2

v - v v v
Area v ^ v

2

max v - v , v v
SALI

2

Area SALI



Definition of GALI 

In the case of an N degree of freedom Hamiltonian system or 

a 2N symplectic map we follow the evolution of  
 

k deviation vectors with 2≤k≤2N,  
 

and define (Ch.S., Bountis, Antonopoulos, 2007, Physica D) 

the Generalized Alignment Index (GALI) of order k : 

ˆ ˆ ˆ  
k 1 2 k

GALI (t) = v (t)  v (t)  ...  v (t)

ˆ 1

1

1

v (t)
v (t) =

v (t)

where 



Wedge product 
We consider as a basis of the 2N-dimensional tangent space of the 
system the usual set of orthonormal vectors: 

ˆ ˆ ˆ
1 2 2N

e = (1,0,0, ...,0),  e = (0,1,0, ...,0), ...,  e = (0,0,0, ...,1)

Then for k deviation vectors we have: 

ˆˆ

ˆˆ

ˆˆ

    
    
     
    
    

          

11 12 1 2N 11

21 22 2 2N 22

k1 k2 k 2N 2Nk

v v v ev

v v v ev
 =   

v v v ev

ˆ ˆ ˆˆ ˆ ˆ
 

     

1 2 k

1 2 k

1 2 k

1 2 k

1 2 k

1 i 1 i 1 i

2 i 2 i 2 i

1 2 k i i i

1 i <i < <i 2N

k i k i k i

v v v

v v v
v v v =  e e e  

v v v



Norm of wedge product 

We define as ‘norm’ of the wedge product the quantity : 

ˆ ˆ ˆ
 

 
 
  

    
 
 
  



1 2 k

1 2 k

1 2 k

1 2 k

1/2
2

1 i 1 i 1 i

2 i 2 i 2 i

1 2 k

1 i <i < <i 2N

k i k i k i

v v v

v v v
v v v =  

v v v



Computation of GALI - Example 
Let us compute GALI3 in the case of 2D Hamiltonian system (4-
dimensional phase space). 

ˆ
ˆ

ˆ
ˆ

ˆ
ˆ

ˆ

 
     
      
     
        

  

1

1 11 12 13 14

2

2 21 22 23 24

3

3 31 32 33 34

4

e
v v v v v

e
v v v v v

e
v v v v v

e

ˆ ˆ ˆ




  



2

11 12 13

3 1 2 3 21 22 23

31 32 33

v v v

GALI = v v v = v v v

v v v



Columns   1        2        3  
2

11 12 14

21 22 24

31 32 34

v v v

v v v +

v v v

1        2        4  

2

11 13 14

21 23 24

31 33 34

v v v

v v v +

v v v

1        3        4  







1/2
2

12 13 14

22 23 24

32 33 34

v v v

v v v

v v v

2        3        4  



Efficient computation of GALI 
For k deviation vectors: 

ˆ ˆ ˆ )
 

 
 
  

    
 
 
  



1 2 k

1 2 k

1 2 k

1 2 k

1/2
2

1 i 1 i 1 i

2 i 2 i 2 i T

1 2 k

1 i <i < <i 2N

k i k i k i

v v v

v v v
v v v =  = det(A A

v v v

the  ‘norm’ of the wedge product is given by: 

ˆ ˆˆ

ˆ ˆˆ

ˆ ˆˆ

      
      
        
      
      

              

11 12 1 2N 1 11

21 22 2 2N 2 22

k1 k2 k 2N 2N 2Nk

v v v e ev

v v v e ev
 =   = A  

v v v e ev



Efficient computation of GALI 

From Singular Value Decomposition (SVD) of AT we get: 

) ) )

) , , ) )

         

    

T T T T T

k
2 T 2 2 2 T 2

1 2 k i

i=1

det(A A = det(V W U U W V = det(V W I W V =

det(V W V = det(V diag(w w w V = w

where U is a column-orthogonal 2N×k matrix (UT·U=I), VT is a k×k 

orthogonal matrix (V·VT=I), and W is a diagonal k×k matrix with 

positive or zero elements, the so-called singular values. So, we get: 

 T T
A = U W V

Thus, GALIk is computed by: 

     
k k

T

k i k i

i=1i=1

GALI = det(A A ) = w   log GALI log w



Behavior of GALIk for chaotic motion 

GALIk (2≤k≤2N) tends exponentially to zero with 

exponents that involve the values of the first k largest 

Lyapunov exponents σ1, σ2, …, σk : 

 1 2 1 3 1 k- (σ -σ )+(σ -σ )+...+(σ -σ ) t

k
GALI (t)  e

The above relation is valid even if some Lyapunov 
exponents are equal, or very close to each other.  



Behavior of GALIk for chaotic motion 
Using the approximation:  

ˆ ˆ ˆ ˆ ,          j 2N1 2 1

2N
σ t σ tσ t σ t σ ti i i i i

i j j 1 1 2 2 2N 2N i 1

j=1

v (t) = c e u  = c e u  c e u c e u v (t) c e

ˆ

ˆ

ˆ





  
  
  
  
  
   



1 3 1 2N1 2

1 3 1 2N1 2

1 3 1 2N1 2

1 11

-(σ -σ )t -(σ -σ )t-(σ -σ )t 3 2N2

1 1 1 1

1 1 1

2 221
-(σ -σ )t -(σ -σ )t-(σ -σ )t 3 2N2

22 2 2 2

1 1 1

k
k kk

-(σ -σ )t -(σ -σ )t-(σ -σ )t 3 2N2

k k k k

1 1 1

c cc
s e e e

c c c

v
c cc

s e e ev
c c c = 

v
c cc

s e e e
c c c

ˆ

ˆ

ˆ




 
 
  
 
 
  

 
 
 

1

2

2N

u

u
  

u

with  i

i 1
s = sign(c ).

where σ1 > σ2…  σn  are the Lyapunov exponents, and       j=1, 2, …, 2N 
the corresponding eigendirections, we get  

jû



Behavior of GALIk for chaotic motion 

From all determinants appearing in the definition of GALIk the one 
that decreases the slowest is the one containing the first k columns of 
the previous matrix:  

1 31 2 1 k

1 31 2 1 k

1 31 2 1 k

1 11 1 1 1

-(σ -σ )t-(σ -σ )t -(σ -σ )t3 32 k 2 k

1 11 1 1 1 1 1

1 1 1 1 1 1

2 22 2 2 2

-(σ -σ )t-(σ -σ )t -(σ -σ )t3 32 k 2 k

2 22 2 2 2 2

1 1 1 1 1 1

kk k

-(σ -σ )t-(σ -σ )t -(σ -σ )t32 k

k k k k

1 1 1

c cc c c c
s e e e s

c c c c c c

c cc c c c
s e e e s

c c c c c c =

cc c
s e e e

c c c

 
 1 2 1 3 1 k- (σ -σ )+(σ -σ )+ +(σ -σ ) t2

kk k

32 k

k k k k

1 1 1

 e  

cc c
s

c c c

 1 2 1 3 1 k- (σ -σ )+(σ -σ )+...+(σ -σ ) t

k
GALI (t)  e

Thus 



Behavior of GALIk for chaotic motion 

2D Hamiltonian (Hénon-Heiles system) 

σ10.047 



Behavior of GALIk for chaotic motion 

σ10.03 

σ20.008 


3

2 2 2 2i
3 i i 1 2 1 3

i=1

ω
H = (q + p )+ q q + q q

2

3D system:  

with ω1=1, ω2=      , ω3=       , Η3=0.09. 2 3



Behavior of GALIk for chaotic motion 

N particles Fermi-Pasta-Ulam (FPU) system:  

with fixed boundary conditions, N=8 and β=1.5. 

   
 
  

 
N N

2 42

i i+1 i i+1 i

i=1 i=0

1 1 β
H = p + q - q + q - q

2 2 4



Behavior of GALIk for regular motion 
If the motion occurs on an s-dimensional torus with sN then the 
behavior of GALIk is given by (Ch.S., Bountis, Antonopoulos, 2008, 
Eur. Phys. J. Sp. Top.): 


  










k k-s

2(k-N)

constant if 2 k s

1
GALI (t)  if s < k 2N - s

t

1
if 2N - s < k 2N 

t



while in the common case with s=N we have : 

 






k

2(k-N)

constant if 2 k N

GALI (t)  1
if N < k 2N

t





Behavior of GALIk for regular motion 

3D Hamiltonian 



Behavior of GALIk for regular motion 
N=8 FPU system: The unperturbed Hamiltonian (β=0) is written as a 

sum of the so-called harmonic energies Ei: 

 

 2 2 2

i i i i

1
E = P + ω Q ,  i = 1, ...,N

2
with: 

    
    

     
 

N N

i k i k i

k=1 k=1

2 kiπ 2 kiπ iπ
Q = q sin ,  P = p sin ,  ω = 2sin

N +1 N +1 N +1 N +1 2(N +1)



Global dynamics 
• GALI2 (practically equivalent to the use of SALI) 

• GALIN 

Chaotic motion: GALIN0 

(exponential decay) 

Regular motion: 

GALINconstant0 

3D Hamiltonian 

Subspace q3=p3=0, p20 for t=1000. 



Global dynamics 

GALIk with k>N 

The index tends to zero both for 

regular and chaotic orbits but with 

completely different time rates: 

Chaotic motion: exponential decay 

Regular motion: power law 

2D Hamiltonian (Hénon-Heiles) 

Time needed for GALI4<10-12 



Behavior of GALIk 

Regular motion:  

GALIk →constant ≠ 0 or GALIk →0 power law decay  
 


  










k k-s

2(k-N)

constant if 2 k s

1
GALI (t)  if s < k 2N - s

t

1
if 2N - s < k 2N 

t



 1 2 1 3 1 k- (σ -σ )+(σ -σ )+...+(σ -σ ) t

k
GALI (t)  e

Chaotic motion:  

GALIk→0 exponential decay 

 



Regular motion on low-dimensional tori 

A regular orbit lying on a 2-dimensional torus for the N=8 
FPU system. 



Regular motion on low-dimensional tori 

A regular orbit lying on a 4-dimensional torus for the N=8 

FPU system. 



Low-dimensional tori - 6D map  

 

 

 



 



 



1

2

3

1 1 2

K B
2 2 1 5 1 3 12π 2π

3 3 4

K B
4 4 3 1 3 5 32π 2π

5 5 6

K B
6 6 5 3 52π 2π

x = x + x

x = x  +  sin(2πx ) - sin[2π(x  - x )]+ sin[2π(x  - x )]

x = x + x

x = x  +  sin(2πx ) - sin[2π(x  - x )]+ sin[2π(x  - x )]

x = x + x

x = x  +  sin(2πx ) - sin[2π(x  - x 1 5

(mod 1) 

)]+ sin[2π(x  - x )]

3D torus 2D torus 



Locating low-dimensional tori 

Orbits with q1=q2=0.1, p1=p2=p3=0, H=0.010075 for the N=4 

FPU system (Gerlach, Eggl, Ch.S., 2012, Int. J. Bifur. Chaos). 



Locating low-dimensional tori 

Orbits with q1=q2=0.1, p1=p2=p3=0, H=0.010075 for the N=4 

FPU system (Gerlach, Eggl, Ch.S., 2012, Int. J. Bifur. Chaos). 

 



Locating low-dimensional tori 

Orbits with q1=q2=0.1, p1=p2=p3=0, H=0.010075 for the N=4 

FPU system (Gerlach, Eggl, Ch.S., 2012, Int. J. Bifur. Chaos). 



Locating low-dimensional tori 

Orbits with q1=q2=0.1, p1=p2=p3=0, H=0.010075 for the N=4 

FPU system (Gerlach, Eggl, Ch.S., 2012, Int. J. Bifur. Chaos). 



Barred galaxies 
NGC 1433 NGC 2217 



Barred galaxy model  
The 3D bar rotates around its short z-axis (x: long axis and y: intermediate). The 

Hamiltonian that describes the motion for this model is: 

2 2 21
( ) ( , , ) ( )

2
x y z b y xH p p p V x y z xp yp Energy      

This model consists of the superposition of potentials describing an axisymmetric 

part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A).  

a) Axisymmetric component: 

  i) Plummer sphere:     ii) Miyamoto–Nagai disc: 

 
2 2 2 2

( , , ) S
sphere

s

GM
V x y z

x y z 
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( , , )
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D
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GM
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x y A B z

 

   

2 1

2 2 2
2 2 2 2 2

2 2 2

2

( , , ) (1 ( )) ,
1 ( )

 ( ) ,  ( ) ( )( )( ),

: positive integer ( 2 for our model) , : the unique positive solution of ( ) 1

nc
bar

du
V x y z Gabc m u

n u

x y z
where m u u a u b u c u

a u b u c u

n n m






 


  

 

       
  

 



Its density is: 
2 2 2 2

2

2 2 2

(1 ) ,   for 1
,  where ,   and 2. 

0,     for 1

n

c m m x y z
m a b c n

a b cm




  
      



b) Bar component: 

       (Ferrers bar) 

105

32

B
c

GM

abc







Time-dependent barred galaxy model  
The 3D bar rotates around its short z-axis (x: long axis and y: intermediate). The 

Hamiltonian that describes the motion for this model is: 

2 2 2 ( , ,
1

( ) ( )
2

, )x y z b y xV x y z tH p p p xp yp Energy      

This model consists of the superposition of potentials describing an axisymmetric 

part and a bar component of the galaxy (Manos, Bountis, Ch.S., 2013, J. Phys. A).  

a) Axisymmetric component: 

  i) Plummer sphere:     ii) Miyamoto–Nagai disc: 
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Its density is: 
2 2 2 2

2

2 2 2

(1 ) ,   for 1
,  where ,   and 2. 

0,     for 1

n

c m m x y z
m a b c n

a b cm




  
      



b) Bar component: 

       (Ferrers bar) 

10 )

2

(5

3
c

BGM

ab

t

c





( ) ( ) 1,   with   ( ) (0)S B D B BM M t M t M t M t    



PSS (t = 1250) 

PSS (t = 3750) 

PSS (t = 6250) 

PSS (t = 8750) 

PSS (t = 11250) 

Time-dependent 2D 

barred galaxy model  



Time-dependent 3D barred galaxy model  

Interplay between chaotic and regular motion 



Numerical Integration of 

Equations of Motion  

and 

Variational Equations 



Efficient integration of variational 

equations 
Consider an N degree of freedom autonomous 
Hamiltonian system having a Hamiltonian function of the 
form: 
 

The time evolution of an orbit is governed by the 

Hamilton’s equations of motion 

with 

being respectively the coordinates and momenta. 



Variational Equations 

The time evolution of a deviation vector  

 

from a given orbit is governed by the variational 
equations: 

where 

The variational equations are the equations of motion of 
the time dependent tangent dynamics Hamiltonian (TDH)  
function 



Autonomous Hamiltonian systems 

Hamilton’s equations of motion: 

Variational equations: 

As an example, we consider the Hénon-Heiles system: 



Integration of the variational equations 

We use two general-purpose numerical 

integration algorithms for the integration of 

the whole set of equations: 

a) the DOP853 integrator (Hairer et al. 1993, 

http://www.unige.ch/~hairer/software.html), which is an explicit non-symplectic 

Runge-Kutta integration scheme of order 8, 

b) the TIDES integrator (Barrio 2005, http://gme.unizar.es/software/tides), 

which is based on a Taylor series approximation   

 

 

 for the solution of system 



Symplectic Integration schemes 
Formally the solution of the Hamilton’s equations of motion can be written 
as: 

where     is the full coordinate vector and LH the Poisson operator: X

     
 
     


N

H

j=1 j j j j

H f H f
L f = -

p q q p

 


  H

n
tLn

H H

n 0

dX t
= H, X = L X  X(t) = L X = e X

dt n!

H A B i A i B

j
τL τ(L +L ) c τL d τL

i=1

e = e e e

If the Hamiltonian H can be split into two integrable parts as H=A+B, a 
symplectic scheme for integrating the equations of motion from time t to 
time t+τ consists of approximating the operator           by HτL

e

for appropriate values of constants ci, di.  

So the dynamics over an integration time step τ is described by 
a series of successive acts of Hamiltonians A and B.  



Symplectic Integrator SAΒA2C 
We use a symplectic integration scheme developed for Hamiltonians of the 
form H=A+εB where A, B are both integrable and ε a parameter. The 
operator         can be approximated by the symplectic integrator (Laskar 

& Robutel, 2001, Cel. Mech. Dyn. Astr.):  

HτL
e

1 εB 1 εB1 A 2 A 1 Ad τL d τLc τL c τL c τL

2SABA = e  e   e  e  e
with 1 2 1

(3 - 3) 3 1
c = ,  c = , d =  .

6 3 2

The integrator has only positive steps and its error is of order 

O(τ4ε+τ2ε2). 

In the case where A is quadratic in the momenta and B depends only on 

the positions the method can be improved by introducing a corrector 

C={{A,B},B}, having a small negative step: 
  

3 2

A,B ,B

c
-τ ε L

2e
with  

Thus the full integrator scheme becomes: SABAC2 = C (SABA2) C and its 

error is of order O(τ4ε+τ4ε2). 

)(2 - 3
c = .

24



Tangent Map (TM) Method 

We apply the SABAC2 integrator scheme to the Hénon-Heiles system 

(with ε=1) by using the splitting: 

with a corrector term which corresponds to the Hamiltonian function: 

 

Use symplectic integration schemes for the whole set of equations (Ch.S., 

Gerlach, 2010, PRE)  

We approximate the dynamics by the act of Hamiltonians A, B and C, 

which correspond to the symplectic maps: 



Tangent Map (TM) Method 

The system of the Hamilton’s equations of motion and the variational equations 

is split into two integrable systems which correspond to Hamiltonians A and B.  

Let 



Tangent Map (TM) Method 
So any symplectic integration scheme used for solving the Hamilton’s 

equations of motion, which involves the action of Hamiltonians A, B and 

C, can be extended in order to integrate simultaneously the variational 

equations. 



Application: FPU system 
N particles Fermi-Pasta-Ulam (FPU) system:  

with fixed boundary conditions, β=1.5 and N=4 - 20. 

   
 
  

 
N N

2 42

i i+1 i i+1 i

i=1 i=0

1 1 β
H = p + q - q + q - q

2 2 4

N=4. Regular motion on 2d torus. Final time t=106. 

CPU times ≈              9 s                                54 s                           1m   37s  



Application: FPU system 

N=12. Regular motion on 6d torus. Final time t=108. 

 

CPU times ≈                       8 h                             22,5 h                            38 h  



Conclusions I 
 

• The Smaller ALignment Index (SALI) method a fast, efficient 
and easy to compute chaos indicator.  

 

• Behaviour of the SALI :  

2D maps: it tends to zero following completely different 
time rates for regular and chaotic orbits, which allows the 
distinction between the two cases. 

Hamiltonian flows and in multidimensional maps: it goes 
to zero for chaotic orbits, while it tends to a positive value 
for ordered orbits.   



Conclusions II 
• Generalizing the SALI method we define the Generalized 

ALignment Index of order k (GALIk) as the volume of the 
parallelepiped, whose edges are k unit deviation vectors. 
GALIk is computed as the product of the singular values of a 
matrix (SVD algorithm).  

 

• Behaviour of GALIk :  

Chaotic motion: it tends exponentially to zero with 
exponents that involve the values of several Lyapunov 
exponents. 

Regular motion: it fluctuates around non-zero values for 
2≤k≤s and goes to zero for s<k≤2N following power-laws, 
with s being the dimensionality of the torus.   



Conclusions III 
• GALIk indices :  

 can distinguish rapidly and with certainty between regular and chaotic motion   

 can be used to characterize individual orbits as well as "chart" chaotic and 
regular domains in phase space 

 are perfectly suited for studying the global dynamics of multidimentonal 
systems , as well as of time-dependent models  

 can identify regular motion on low–dimensional tori 
 

• SALI/GALI methods have been successfully applied to a variety of conservative dynamical 
systems of  

 Celestial Mechanics (e.g. Széll et al., 2004, MNRAS  -  Soulis et al., 2008, Cel. Mech. Dyn. 
Astr. -  Voyatzis, 2008, Astron. J. - Libert et al., 2011, MNRAS - Racoveanu, 2014, 
Astron. Nachr.) 

 Galactic Dynamics (e.g. Capuzzo-Dolcetta et al., 2007, Astroph. J. - Carpintero, 2008, 
MNRAS - Manos & Athanassoula, 2011, MNRAS - Carpintero et al., 2014, MNRAS) 

 Nuclear Physics (e.g. Macek et al., 2007, Phys. Rev. C - Stránský et al., 2007, Phys. 
Atom. Nucl. - Stránský et al., 2009, Phys. Rev. E - Antonopoulos et al., 2010, PRE) 

 Statistical Physics (e.g. Paleari & Penati, 2008, Lect. Notes Phys. - Manos & Ruffo, 2011, 
Trans. Theory Stat. Phys. - Christodoulidi & Efthymiopoulos, 2013, Physica D) 



Conclusions IV 
 

• Tangent map (TM) method: Symplectic integrators can be 

used for the efficient integration of the Hamilton’s equations 

of motion and the variational equations. 

They reproduce accurately the properties of chaos 

indicators like the GALIs.  

These algorithms have better performance than non-

symplectic schemes in CPU time requirements. This 

characteristic is of great importance especially for 

multidimensional systems.  
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